
Abstract

A RESOLUTION OF THE CITY COMMISSION OF THE CITY OF LAKE WALES, FLORIDA, SUPPORTING THE 2009 POLK COUNTY COMPREHENSIVE WATER SUPPLY PLAN, APPROVING THE PROJECT LISTING OF SAID PLAN, AND APPROVING THE SUBMISSION OF THE COMPLETE PROJECT LISTING TO THE SOUTHWEST FLORIDA WATER MANAGEMENT DISTRICT FOR INCLUSION AS PART OF THE REGIONAL WATER SUPPLY PLAN.

WHEREAS, the Southwest Florida Water Management District maintains a Regional
Water Supply Plan which identifies public water supply needs of Polk County, Florida; and
WHEREAS, the Southwest Florida Water Management District provides cooperative funding and grant funding for projects in the approved Water Supply Plan based upon a priority ranking system; and

WHEREAS, the Polk County Board of County Commissioners, through Reiss Engineering and in cooperation with Polk County municipalities, has completed the 2009 Polk County Comprehensive Water Supply Plan identifying future water supply projects; and

WHEREAS, the public water supplies in Polk County have need for a safe, adequate, dependable, and economical sources of supply to meet the current and future needs of their customers; and

WHEREAS, the City of Lake Wales' public water supply has need for a safe, dependable and adequate water source to meet customer needs; and

WHEREAS, the City of Lake Wales takes exception to the water supply and demand projections but fully supports the concepts of the 2009 Polk County Comprehensive Water Supply Plan and believes the project list included in the Plan to be appropriate, approvable and in the best interests of its citizens,

NOW, THEREFORE, BE IT RESOLVED BY THE CITY COMMISSION OF THE CITY OF LAKE WALES, POLK COUNTY, FLORIDA

SECTION 1. The foregoing findings are incorporated herein by reference and made a part here of.

SECTION 2. The City of Lake Wales approves the 2009 Polk County Comprehensive Water Supply Plan project list and recommends the submission of the complete list to the Southwest Florida Water Management District for inclusion in its Regional Water Supply Plan with the following stipulations:
a) The city's water service area is defined in the City of Lake Wales/Polk County Water and Wastewater Service Territorial Agreement, Contract No. 96-2 as amended on July 29, 2008 by the City of Lake Wales/Polk County Florida Settlement of (1.) Past Due Water Bills; (2.) Agreement as to Service Area and Assets Ownership and (3.) Future Water Service Interlocal Utility Agreement.
b) All existing water supply facilities, whatever the present use, within the city's water service area vest with the city and will be incorporated into the city's future resources rather than the into the future resources of the county.
c) The city can develop not only alternative water supply projects as stated in the county's master plan but also alternative water supply projects as listed in the city's master plan or other projects that are developed cooperatively in the future.

SECTION 3. This resolution shall take effect immediately upon its passage.
PASSED AND CERTIFIED AS TO PASSAGE this \square day of Septembers, 2009.

ATTEST: $\frac{\text { CITY CLERK }}{\text { CITABSangan }}$

MEMORANDUM

August 27, 2009

TO: Honorable Mayor and City Commission
FROM: Sarah B. Kirkland, Utilities Project Supervisorp
RE: \quad The Polk County Comprehensive Water Supply Plan
Please see attached both the short and long list projects as recommended by the Polk County Comprehensive Water Supply Plan for your review. The City of Lake Wales did not have any suggested projects on the short list. On the long list, the County listed 4 projects that the City may cooperatively participate in at such time as the need arises. These projects, items numbered $38,46,82$, and 92 , have been identified by a check mark.

Short List			Source/Caiculations	Potentlal Quantity	Capita! Cost	Unit Costs	Yield (MGD)		Permit -ablity		Adiditonal Beneff		Cost (ndex (\$)		ImplementationTime10		Totai Score
$\underline{1}$	Code	Description				(SIKgal)	Grade	Score	Grade	Scare	Grade	Score	Grade	Score			
1	c-1	Land Use Transitions (Well Name /Municlaality proposed io supplv): This project calegory consists of identifying and planning for the transitoning of existing Agricultural, Mining, or ICl wells; which have been decommissioned or will be decommilsstoned due to cessation in use form the current water supply use. Tansfer to triunicipal supply will only be considered in cases where the land use will transtition from an agricultural, fndustrial, minhg, or other use to a typical municlpat use, for example a change in use fom agriculture to resldental or commercal davelopment. Land use transitions will include analysts of the SWFWMD DWRM I modeling program.	PCSWSP Costs based on 10 miles of piping. drillingw ells, ground water pumping system, conventonal groundwater treabment, and fransfer pumping system. Unil costs include both captal and O8M costs.	25.00	\$63.3	\$0.47	10,0	300	7	175	8	-80	Grad	230	10	100	885
	G.9	Land Use Transitions West Ft. Meade Wells] - This project would constst of the transilloning of an ICI well focated just west of FL. Meade. The well is currenty permilted for 9.1 MGD and their 10 year average flow is approximately 6 MGD . Land use transplons may finclude analysis of the SWFWMD DWRM II modeling program.	PCSWS Cost includes 15 miles of plping, Groundwaler pumping system, conventional groundwater treatment facility, transfer pumping system. Unit costs include capital and O2M costs.	6.00	\$29.6	\$0.96	2.4	72	7	175	8	80	8	210	10	100	637
	G-7	SE Polk County Well field. This profect would consist of driling several Lowertupper Floridan wells in the SE area of Folk County. This concept would conslst of withdrawing groundwater from the LFAUFA and treaing the raw water to meet primary and secondary freaiment standards for disfribulfon as a potable source to meet regionat demands in the SE area of Polk County.	PCsWSP Cost analysis inciudes 25 miles of transmission piping and membrane Iraatment Unit costs include both capital and O\&M costs.	15.00	\$90.4	\$1.52	6.0	180	7	175	5	50	7	187	4	40	632
	R-25	LakelandIPCU-TECO Hwy 50 Industrial Reuse- This is a joint profect to supplement the TECO energy facilly with an addifonal 7.6 MGD of reclamed water for expanslon of the power feclity. The project will Include Polk County, Lakeland, and TECO. In return, Lakeland will increase their current water use permit quantlly, extend thelr permil to 20 years, and offset per capila demands.	Boyle Engineering Conceptual Deslgn Report Lakeland 2 Polk County Reuse miliative	6.0	\$40.0	\$1.52	24	72	9	22.5	2	20	7	187	7	70	574
	G. 24	Lakeland: C.W. Combee W.T.P., Ground Water Blending . This progect would consist of blending Lower and Upper Fleridan well water. This concept would consist of drilligg a new L.FA well for new water supply. The new LFA raw water supply in concept would be blended elther with the extsting UFA taw water supply or blended with the existing finished water from the WTPs. Water qually and quantily will be evaluated to keep any additiona! freatment at a minimum at any facilly.	pcswsp Cast analysis includes drilling a lower Floridan well(s), Capital Costs only include the intlal planing, permitting and design fees, as well as the infrastructure constuction costs, Including land costs, fegal fees and contingencies. Unit costs includes both capilal and annual O8M costs.	1.20	\$1.20	\$0.36	0.5	14	8	200	2	$\text { - } 20$	9	235	9	90	559
	G. 5	NE Polk County Lower Fiortdan Aaulfer - This profect would consist of drilling a groundwater well into the Lower Flondan aquifer In the NE atea of Polk County. This concept wothd consist of withdrawing groundwater from the LFA and treating the raw water to meet primary and secondary treatment standards for distributlon as a polable source fo meet reglonal demands in the NE area of Polk County.	pcswsp Cost analysls incledes membtane treatment Unit costs include caplal and 08 M costs.	4.00	\$29.2	81.79	1.6	- 48	7	175	7	70	7	175	7	70	538

Short List			Source/Calcutations	Potentlal Quantity	Capital Cost	Unlt Costs	YIeld (MGD)		Permit -ability		Addiftional Banefit		Cost Index (\$)		implementation Time		Total Score
nik	Code	Description			(Smil)	[sikgal)	Grade	Scare	Grade	Score	Grade	Score	Grade	scare			
6	6-25	Lakeland: T.B.Wlilams W.T.P.. Ground Water Blending - This project would consist of blending Lower and Upper Flofidan well water, This contept would conslst of driting a new LFA well for new water supply. The new LFA raw water supply in concept would be blended either wilh the existing UFA raw water supply or blended with the existing finished water from the WTP5. Water qually and quantity will be evaluated to keep any additional frealment at a minfmum at any facility.	PCSWSP Cost analysis includes difilling a lower Flaridan well(s). Capital Costs only Include the Inilal planing, permitting and design fees, as well as the infrastructure constuction costs, including land costs, tegal fees and contingencies. Unit costs includes both capilal and annuat O8M cosis.	3.03	\$2.56	\$0.16	1.2	36	6	150	2	20	10	243	9	90	540
3	©-33	Winter Haven Water Department: Falrfax WT P. Ground Water Blending This prolect would consist of blending Lower and Upper Floridan well water. This concept would consist of ditilng a new LFA well for new water supply. The new LFA raw water supply in concept would be blended ether with the existing UFA raw water supply or blended with the existing finished water from the WTPs. Water qually and quantiky will be evaluated to keep any addillonal treatment at a minimum at any facitify.	pCSWSP Cost analysis inctudes drilling a lower Floridan well(s). Capital Cosis only include the mitial plarning, permiting and design fees, as well as the Infastucture construction cosis, including land cosis, legal feas and contingencles. Unit cosis hncludes boih capital and annuat O\&M costs.	0.74	\$1.18	\$0.31	0.3	9	6	150	5	50	9	237	9	90	536
1	6.12	Eartow: 7 MGD W.T.P.. F10 Graund Water Elending- This project would consist of blending Lower and Upper floridan well water. This concept woud consist of dilling a new LFA well for new water supply. The new LFA raw water supply in concept would be blended either with the existing UFA raw water supply or blended with the existing finished water from the WTPs. Water quality and quanlity will be evaluated to keep any adoitional treament at a minimum at any facilly.	pcswsp Cost analysis inctudes drilling a lower Fioridan well(s). Capital Cosis oniy include the intial planning, permiliting and design fees, as well as the infrastructure consinuction costs, Including land costs, legal fees and contingencies. Unit cosis Includes both capital and ennual O\&M costs.	0.63	51.00	s0.30	0.3	8	6	${ }^{150}$	5	50	10	238	9	90	535
;	G-10	Auburndala: Atlantle W.T.P. Ground Water Blending- This project would consist of blending Lower and Upper Floridan well water. Thls concept would consist of drilling a new LFA well for new water supply. The new LFA raw water supply in concept would be bended elther with the existing UFA raw waler supply or blended with the exising finthed water from the WTPs. Water quality and quantly will be evaluated to keep any adotitoral teatment at a minimum at any fachlyy.	PCSWSP Cost analysis includes dritiling a lower Floridan well(s). Capital Costs only inchude the inflial plaming, permiting and design fees, as well as the infrastructute construction costs, including land costs, legal fees and contingencles. Unit costs iscludes both capital and annual O8M costs.	0.62	\$1.00	\$0.31	0.2	7	6	150	5	. 50	9	237	9	90	535
	S-15	Peace River L Land Use Transition- This project would consist of the construction of a surface water Ireatment facility and associated teservoir through the developmenit of a regional partnership to supply Polk County and its muncipalities wilh surface water from the Peace Rlver. Combined flows from Peace River af Ft. Meade and Eowlegs Creek conclude there is approximately 7.4 mgd of additionai flow, with a minlmum reservoir size of 29,000 acre-f and a minimum diverslon capacity of 100 mgd. Combined with the West Fl. Meade Wells land use transitions this could potentially provide a substantial amount of water for the Polk County region. The West Ft. Meade Wells are estimated to supply an additional 6 mgd of ground water.	PCSWSP Costs based on 20 miles of piping from Soulh of Ft. Meade to Barlow, transter pumping, combined surface and ground water treatment, and storage. Unitit cosis are capital and O\&M costs.	13.4	\$305.8	\$5.02	5.4	161	8	200	9	30	2	41	4	40	532

Short List			Source/Calculations	Potenthal Quantly	$\frac{\text { Capital Cost }}{(\text { Imil }}$	Unit Costs	Yteld (MGD)		Permit -ablity		Additional Benefit		Cost index (s)				Yotal Score
$\underline{\underline{\text { ik }}}$	Code	Descripition - -					Grade	Score	Grade	Scare	Grade	Score	Grade	Score			
2	0.2	Jolnt ToholsTopr Prolect: This profect would consist of purchasing bulk water supply from Tohopekallga Water Authority (IWA). In concept this prolect would include partnering wilh Tohopekaliga Water Aulhority in the develapment of elther a regional surface water and ground water suppiy facility from both the Kissimmee River and Cypress Lakes wellieid. Partnerng with Tohopekallga Water Authorily could reduce costs on a reglonat project Quanlity detemtned through Tohopekaliga Water Aulhority evaluations.	PCSWSP Cost based on inillal information provided by Polk County Ufililies and Tohopekalige Water Authority.	5.00	560.0	52.20	2.0	60	7	175	9	. 93	${ }_{6}$	158	4	40	526
3	R-43	Winter Haven Resse Option \#3. Calpline Energytransmission main and pumping station from Winter Haven Piant \#3 to connect 10 Calpine Power Plant. Flow of $1.5 \mathrm{mgd} /$ offset of 1.5 mgd .	The City of Winter Haven Costs are based on The City of Whter Haven's 10 -year Watef Supply Plan	1.5	54.50	\$0.72	0.6	48	9	225	2	20	9	220	4	40	523
4	P.5	Public Access Reuse. The concept of this category woutd be io serve the public with recialmed water to offel frigation demands.	pcswsp Costs include basic addliorial treatment to wastewater facilly and piping to restidential area. Unill cosis includa both caplital and O8M costs.	15	$\$ 369.7$	\$4.4	6.0	. 180	8	200	2	20	3	69	4	40	503
;	0.1	Tampa Bay Water Supply - This project would consist of purchasing bulk water supply from Tampa Bay Water. In concept this project would include partsering wilh Tampa Bay Water In the development of elther a 25 MGD Desal 1 facilly or development of a second Alafia River reservoir to ncrease water suppiy from the Alafia River. Partnering with Tampa Bay Water could reduce costs on a teglonal project. Quantity delermined through Tampa Bay Waler's Alafia River evaluations. Quantiy delermined through Tampa Bay Water's Alafia River evaluations.	PCSWSSP piplong fom Lakeland to Tampa Bay Water Alafia Resenvoir location. estmaled assisted cost by Polk County for construction of facilites. surface water pumplng, conventiona surface water treatment, and transier pumplha.	10	5293.1	\$6.49	4.0	${ }^{\prime} \cdot{ }^{120}$	9	225	10	100	0	0	3	30	475

Long List			Source/Calculations	Potential Quantly MGD	Capital Cost	Unit Costs			Permitability		Adeftiona! Benatit		Cost Index (\$)		implementationThme		Total Score
Rank	Code	Description			(smil)	[51 Kgal	Grade	Score	Grade	Score	Grade	Score	Grade	Score			
1	G-1	Land LSE Transllions (We/ll Name/ Municioally proposed to supply): This project category consisis of dentifying and planning for the transilioning of existhg Agrculturat, Maing, or Cl wells; which have been decommlssioned or will be decommissloned due to cessalion in use from the current water supply use. Transfer to muntipal sujply will only be considered in cases where the land use will transiton from an agricullurat, industria, mining, or other use to a typical municipat use, for example a change in use from egricullure to restdential or commercial development. Land use transitoons will inciude analysis of the SWFWMD DWRM II modeling program.	PCSWSP Costs based on 10 miles of piping, drillingw ells, ground waler pumping system, conventional groundwater treatrant, and transfer pumping system. Unlt costs inctude both capital and ORM costs.	25.00	\$63.3	\$0.47	10.0	300	7	175	,	${ }_{88}$	-	230	10	100	885
2	G-s	Land Use Transitions West Ft, Meade Wellis]- This project would consist of the transitioning of an icl well located just west of Ft. Meade. The well is currently permitted for 9.1 MGD and their 10 year laverage flow is approximately 6 MGD. Land use transitions may include analysis of the SWFWMD DWRM II modeling program.	PCSWSP Cost Includes 15 miles of piping, Groundwater pumping system, conventional groundwater trealment facllty, transfer pumping system, Unit costs include captel and O\&M costs.	6.60	\$29.6	\$0.96	2.4	72	7	175	8	80	8	210	10	100	637
3	G-7	SE Polk County Well field- This profect would consist of drilling several Lowerfupper Floridan wells in the SE area of Pok County. This concept would consist of withdrawing groundwater from the LFAUFA and treating the raw water to meet primary and secondary freatment standards for distribution as a potable source to meet reglonal demands in the $S E$ area of Polk County.	PCSWSP Cost analysis Includes 25 miles of transmission plphy and membrane Ireaiment. Unit cosss Include both caplal and O\&M costs.	15.00	\$90.4	51.52	6.0	180	7	175	5	50	7	187	4	40	632
4	R-25	LakelandPCU-TECO Hwy 60 Industrial Reuse. This is a joint project to supplement the TECO energy facilty with an addilional 7.6 MGD of reclalmed water for expansion of the power factilly. The project will Include Pok County, Lakeland, and TECO. In relun, Lakeland will increase their curtent water use permil quantify, extend their permit to 20 yearss and offset per capila demands.	Eboyie Engineering Conceptual Design Report Lakeland \& Pok County Reuse miliative	6.0	\$40.0	51.52	2.4	72	9	225	2	20	7	187	7	70	574
5	G-24	Lakeland: C.W.. Combee W.T.P. Ground Water Diending - Fhis project would consist of blending Lower and Upper Floridan well water. Thls concept would consist of dilling a new LFA well for new water supply. The new LFA raw water supply in concept would be blended eliher with the existing UFA raw water supply of blended with the exlsting finished water from the WTPs. Water quality and quantly will be avaluated to keep any additional treatment at a minimum at any facilty.	peswsp Cost analysis inctudes driling a lower Flotdan well(s). Caplial Costs only include the inllal planning, permitting and deslgn fees, as well as the Infrastructure construction costs, including land costs, legal fees and coningencles. Unit cosis thefides both caplal and annual 0\&M costs.	1.20	\$1.20	\$0.36	0.5	14	8	200	2.	20	9	235	9	$\stackrel{90}{\because}$	559
7	G-5	NE Polk County Lower Floridan AquilferThis profect would consist of drillig a groundwater well into the Lower Floridan aquifer in the NE area of Polk County. This concept woutd consist of withdrawing groundwater from the LFA and treating the raw water to meat primary and secondary treatment standards for distribution as a potable source to meet regonal demands in the $N E$ area of Poik County.	PCSWSP Cost analysis includes membrane treatment Unit costs include capital and ORM costs.	4.00	\$29.2	\$1.79	1.6	48	7	175	7	70	7	175	7	70	538

Rank			Source/Calculatons	Potential Quantity	Capital Cost	Unit Costs	Yleid (MGD)		Permitability		Additiona! Benefit		Cost index (5)		$\begin{aligned} & \text { Implementatlori } \\ & \text { Time } \end{aligned}$		Total Score
		Lakeland: T E. Whiliams W.T.P.. Ground Water Blendinq		MGD	(smlil)	(SIKgal)	Grade	Score	Grade	Score	Grade	Score	Grade	Score		de	
6	G-25	This project would consist of blending Lower and Upper Floridan well waier. Thls concept wauld consist of drlling a new LFA well for new water supply. The new L.FA raw waler supply in concept would be blended eilher with the existing UFA raw water supply or blended with the extsing innshed water from the WTPs. Water quality and quantly will be evaluated to keep any additiona! treatment at a minimum at any faclity.	PCSWSP Cost analysis inctudes drilling a fower Floridan well(s). Capital Costs only include the inital planing, permitting and deslgn fees, as well as the infrastructure construction costs, including fand costs, legal fees and contingencles, Unit costs neludes both capital and anmual O\&M cosis.	3.03	\$2.56	\$0.16	1.2	36	6	450	2	20	10	243	9	90	540
8	G-33	Winter Haven Water Degartmeni: Fairfax W. T. . Ground Water Blending This project would consist of blending Lower and Upper Floridan well water. This concept would conslst of driling a new LFA well for new water supply. The new L.FA raw water supply in concept would be blended either with the existing UFA raw water supply or blended with the existing finished water from the WTPs. Water quality and quanlity will be evaluated to keep any additional treatment at a minimum at any fachity.	PCSWSP Cost analysis includes drilling a tower Fioridan well(s). Capital Costs only include the intial planning, pempling and design fees, as well 35 the infrastructure construction costs, fincluding land cosis, legal fees and contingencles. Unt costs includes both capital and amual O\&M costs.	0.74	\$1.18	\$0.31	0.3	3	6	150	5	50	9	237	9	90	536
9	c-12	Bartow: 7 MGD W.T.P., \#10 Ground Water Biending - This prolect would consist of blending Lower and Upper Fioridan well water. This concept would conslst of dilling a new LFA well for new water supply. The new LFA raw water supply in concept would be blended either with the existing LJFA ras water supply or blended with the existing finished water form the WTPs. Water quallty and quantly will be evaluated to keep any addittonal treatment ak a minhmum al any facilly.	Pcswsp Cost anatysis includes drilling a lower Floridan well(s). Capitat Costs cnly include the intlas plaming, permitting and design fees, as well as the infrastucture consluction costs, lncluding land costs, legal fees and contingencles. Unit costs includes both capital and annual O\&M costs.	0.63	\$1.00	\$0.30	0.3	8	6	150	5		10	238	9	90	535
10	G-10	Auburndale: Atantic W.T.P. Ground Water ElendingThis project would consist of blending Lowet and Upper Floridan well water. This concept would consist of dinling a new LFA well for new water supply. The new LFA raw water supply in concept would be blended ether with the exisilng UFA raw water supply or blended with the existing finished water from the WTPs. Water quallty and quantly will be evaluated to keep any addilonal freatment at a minmum at any facility.	peswsp Cost analysis nctudes driting a fower Flondan well(s). Capital Costs only include the Initial planning, permilting and destgn fees, as well as the infrastructure construction cosis, including land costs, legal fees and contingencies. Unit costs inciudes both capital and annual O\&M costs.	0.62	\$1.00	\$0.31	0.2	7	δ	150	5	50	9	237	9	98	535
11	S-15	Peace Rivarl Land Use Transition - This project would consist of the construclion of a surface water treatment facilly and associated teservolr through the development of a reglonal partnership to supply Poik Counky and its municipaltles with suriace water from the Peace Rlver. Comblned flows from Paace River at FL Meade and Bowlegs Creek conctude there is approximately 7.4 mgd of additional flow, with a minimum reservolr size of 29,000 acre- ft and a minmum diversion capacity of 100 mgd. Comblned with the West Ft. Meade Wells land use transillons this could polentally provide a substantial amount of watar for the Polk County regton. The West FL. Meade Wells are estimated to supply an additional 6 mgd of ground water.	peswsp Costs based on 20 milies of piping from South of ft Meade fo Bartow, transfer pumping, combined surface and ground water treatment, and storage. Unilt cosis are capital and osm costs.	13.4	\$305.8	\$5.02	5.4	161	8	200	9	90	2	41	4	40	532

[^0]| Long List | | | Source/Calculations | Potentia! Quantity | Capital Cost | Unit Costs | Yeld (med) | | Permitability | | Additional Benefit | | Cost index (\$) | | implementationTimeTome | | Total Score |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Jaint ToholS ${ }^{\text {dop }}$ R Project : | | | (smill) | (s/kgal) | Grade | Score | Grade | Score | Grade | Score | Grade | Score | | de | |
| 12 | 0.2 | This profect would consist of purchasing bulk water supply from Tohopekaliga Water Authority (TWA). In concept this project would fnclude partnering with Tohopekaliga Water Authonty In the development of either a regional surface water and ground water supply facility from both the kissinmee fiver and Cypress Lakes wellfeld. Partnering with Tohopekaliga Weter Authority could reduce costs on a reglonal project. Quentity detemined lhrough Tohopekallga Water Authorly evaluations. | PCSWSP
 Cosi based on initial infomation provided by Polk County Utilliles and Tohopekallga Water Authorily. | 5.00 | \$60.0 | \$2.20 | 2.0 | 50 | 7 | 175 | 9 | 93 | 6 | 158 | 4 | 40 | 526 |
| 13 | R-43 | | The Clity of Winter Haven Cosis are based on The City of Winter Haven's 10 -year Water Supply Plan | 1.5 | \$4.50 | 50.72 | 0.6 | 18 | 9 | 22.5 | 2 | 20 | 9 | 220 | 4 | 40 | 523 |
| 14 | R-5 | The concept of this category would be to serve the putbec with reclalmed waler to offset lrigallon demands. | pcswsp
 Costs inctude basic adtilional trealment to wastewater facility and plping to residential area. Unit costs inchude both capital and O\&M costs. | 15 | \$369.7 | \$4.4 | 6.0 | 180 | 8 | 200 | 2 | 20 | 3 | 69 | 4 | 40 | 509 |
| 15 | $0-1$ | Tampa Bay Water Supply-
 This project would consist of purchasing bulk water supply from Tampa Eay Water. In concept this prolect would include parinering with Tampa Bay Water In the development of either a 25 MGD Desal II facility or development of a second Alafia Rlver reservoir to increase water supply from the Alafia River. Partnering wilh Tampa Bay Water could reduce costs on a regional project. Quanily determined through Tampa Bay Waier's Alafia Fiver evaluations. | PCSWSP
 Cost analysis based on 35 miles of piping from Lakeland to Tampa Bay Waler Alafia Reservoir location. estimated assisted cosi by Polk County for construction of facilities, surface water pumping, conventional surface water ireatment, and transfer pumpling. | 10 | \$293.1 | \$6.49 | 4.0 | 120 | 9 | 225 | 10 | 100 | 0 | 0 | 3 | 30 | 475 |
| 6 | G-18 | This project would consist of blending Lower and Upper Floridan well water. This concept would consist of drilling a new LFA well for new water supply. The new LFA raw water supply in concept woutd be blended either with the existing UFA raw water supply or blended with the existing finished water from the WTPs. Water quality and quanlly will be evaluated to keep any additional treatment at a minimum at any faclify. | PCSWSP
 Cost analysis inchudes driling a lower Floridan well(s). Capital Costs only inctude the ivilial planning. permitting fand design fees, as well as the infrastructure construction costs, moluding land costs, legal fees and contingencles. Unit cosis fnctudes both captial and annual O\&M costs. | 0.16 | 50.87 | \$1.04 | 0.1 | 2 | 6 | 150 | 2 | 20 | 8 | 207 | 9 | 90 | 469 |
| , | G-20 | Haines Clty: W.T.P. No1 Ground Water Blending-
 This project would conslst of blending Lower and Upper Floridan well water. This concept would consist of dilling a new LFA well for new water supply. The new LFA raw water supply in concept woutd be blended eiber with the existing UFA raw water supply or blended with the existing finished water from the WTPs. Water quality and quantity will be evaluated to keep any adidional treament at a minlmum at any facility. | PCSWSP
 Cost analysis includes drilling a lower Floridan well(s). Caphat Costs only Include the indiat planning, permiting and design fees, as well as the infrastructure construction costs, including lisnd costs, legal fees and contingencles. Unit costs includes both capital and annual O\&M costs. | 0.31 | \$0.93 | 50.61 | 0.1 | 4 | 6 | 150 | 2 | 20 | 9 | 225 | 7 | 70 | 468 |

Long List			Source/Calculations	Potential Quantity	Capltal Cost	Unit Costs	Yald (MGD)		Permittabilly		Additional Bonefit		Cost index (\$)		ImplementationTlme		Totai Score
ank	Code				(Smil)	[SiKgal]	Grade	Score	Grade	Score	Grade	Store	Grade	Score	Grade		
18	6.61	Southwest/Polk Co. Unility: imperial Lakes W.T.P. Ground Water Biending This prolect would consist of blending Lower and Upper Flotidan well water. This concept would consist of drilling a new LFA well for new water supply. The new LFA raw water supply in concept would be blended elther with the existing UFA raw water supply or blended with the existing finished water from the WTPs. Water quality and quantily will be evaluated to keep any additional treatment at a minimum at any facility.	PCSWSP Cost analysis Includes driling a lower Floridian well(s). Capital Costs only include the intilal plarning, permiling and design fees, as well as the Infastructure construction costs, including land costs, legal fees and contingencies. Untt cosis includes both capllal and annual O\&M cosls.	0.22	\$1.17	S0.85	0.3	3	6	450	2	20	9	215	8	80	467
19	G-11	Auburndale: WInona Park W.TP.. Ground Water ElendingThis project would consist of blending Lower and Upper Floridan well water. This concept would consist of driling a new LFA well for new water supply. The new LFA raw water supply in concept would be blended ether with the existing UFA raw water supply or blended with the existing finished water from the WTPs. Water guality and quanilif will be evaluated to keep any additional Ifeatment at a minimum al any fachly.	PCSWSP Cost analysis includes driting a lower Floridan well(s). Capltal Costs only include the initial planting, permitting and design lees, as well as the infrastructure construction costs, including land costs, fegal fees and contingencies. Unit costs freludes both capial and annuat O\& M costs.	0.29	50.99	50.65	0.1	3	6	150	2	20	9	223	7	70	$46 E$
0	G-4	Lower Floridan Ground Water Blending- This category of projects would consist of blending Lower and Upper Floridan well water. Water qualify and quantity will be evaluated to keep any addillonal treatment at a mindrum at any facilly.	PCSWSP Cost analysis incudes membrane treatment Unit cosis incitde both capital and O\&M cosis.	13.13	\$49.74	\$1.96	5.2	157	4	100	3	30	7	168	1	10	466
1	G-34	Winter Haven Water Denartment: Inwood W.T.P. Grount Water Blending This project would consist of blending Lower and Upper Fioridan well water. This concept would consist of drilling a new LFA well for new water supply. The new LFA raw water supply in concept would be blended either with the exising UFA faw water supply or blended with the existing finished water from the WTPs. Water quality and quantity will he evaluated to keep any addiliona! Ireatment at a minimum at any faclity.	PCSWSP Cost analysis inciudes driling a lowe: Floridan well(s). Capital Costs only include the intias planning, permiting and deslgn fees, as well as the Infrastructure consinuction cosis. including land costs, legal fees and contlingencies. Unit costs includes boh capital and annual O\&M costs.	0.15	\$0.87	S1.11	0.1	2	6	150	2	20	8	204	9	90	456
$!$	G-37	Winter Haven Water Dopartment: Winterset Gardens W.T.P. Ground Water Blending- This project would consist of btending Lower and Upper Floridan well water. This concept would consist of drilling a new LFA well for new water supply. The new LFAA raw water supply in concept would bo blended elther with the existing UFA raw water supply or blended with the existhng finished water from the WTPs. Water quality and quantily will be evaluated io keep amy addlional freatment at a mintmum at any facility.	PCSWSP Cost analysis includes dilling a lower Finridan well(s). Capital Cosis only Include the initial planning, permiting and design fees, as well as the Infrastructure constraction costs, including land costs, legal fees and contingencies, Unit cosis inciudes both capital and annual O8M costs.	0.21	50.98	50.89	0.1	3	6	150	2	20	8	213	8	80	465
	S-15	Expantion of SWFWMD Uppar Peace R, Water Storace- This profect would consist of increasing the berm for mound) hetghts of the reservoir creating a larger volurne of water which couid be stored in the existing reservoir, specifically to create a situation whers Polk County and its municipalties could use the excess water for supply.	Pcswsp Quantlity will te more specitic afier SWFNMD completes the Lake Hancock and Upper Peace R. Water Storage evaluations, Cost estimation based on reservolr expansion.	2.0	\$20.0	50.57	0.8	24	5	125	3	30.	9	226	6	60	465

Long List			Source/Calculations	Potental Quantity	Captal Cost	Unit Costs	Yleld (MGD)		Permiltability		Additlonal Beneft		Cost Index (\$)		ImplementationTime		Total Store
ank	Code	Description				(SMKgai)	Grade	Score	Grade	Score	Grade	Score	Grade	Score	10\%		
24	R-9	Aubumdale Westsida Reqional WWTF Option ${ }^{2} 2$ - Temoroc Preserve This project would consist of continuling to supply the Tenoroc Preserve with reckamed water to potenlially galn incentives for water supply. Incentives such as: hrereased water use permilted quantify, extended permill length, per capla demand offsets, or other incentlves.	PCSWS? Quantity based on total teclaimed water avallable from the Westside Reglonal WWTF in 2030. Quantly estimated to be 0.74 MGO of total reuse water. Capital costs based on Increased pipe size to Tenoroc Preserve.	0.74	\$2.65	\$0.70	0.3	9	7	175	2	20	9	221	4	40^{\prime}	485
35	G-22	Lake Alfred: Lake Alfred Water Plant - This project would consist of blending Lower and Upper Floridan well water, This concept would consist of dililing a new LFA well for new water supply. The new LFA taw water supply in concept would be blended elther with the existing UFA raw water supply or blended with the existing finished waler from the WTPs. Water quality and quandify will be evaluated to keep any addillonal frealment at a minhmum at any faclity.	peswsp Cost analysis Includes drifing a lower Floridan well(s). Caplat Costs onily inctude the initial planning, permiting and destgn fees, as well as the infrastructure construction costs: including land cosis, legal fees and contingencies. Unit costs includes bolh capital and annual O\&M cosls.	0.18	\$0.87	\$0.93	0.1	2	6	150	2	20	8	211	8	80	463
:8	G-44	Northwest: Palmore Water plant. Ground Water Blending Thls profect would consist of blending Lower and Upper fiofidan well water. This concept would consist of dirlling a new LFA well for new water supply, The new LFA raw waler supply in concept would be blended either with the existing UFA raw water supply or blended with the existing fintshed water from the WTPs. Water quality and quanlly will be evaluated to keep any additional treatment at a milimum at any facilly.	PCSWSP Cost analysis includes drilling a lower Fioridan well(s). Capital Costs only thelude the inilial planning, permitting and design fees, as well as the infrastructure construclion costs, Inciuding fand costs, legal fees and contingencies. Unit costs includes footh captal and annual O8M costs.	0.18	50.87	50.93	0.1	2	6	150	2	$20 .$	8	211	8	80	463
7	6-49	Northeast: Berry W.T.P. Ground Water BlendingThis project wolld consist of blending Lower and Upper Floridan well water. Thls concept would consist of dilling a new L.FA well for now water supply. The new LFA raw water supply in concept would be biended elther with the existing UFA raw water supply or blended with the existing finished water from the WTPs. Water quality and quantity will be evaluated to keep any addilonal treatment at a minimum at any facitity.	PCSWSP Cost analysis Includes driling a lower Floridan well(s). Capital Costs onty include the inftial plarning, permitting and design fees, as well as the Infrasinucture construction costs, metuding land costs, legal fees and contingencies. Unit cosis includes both captar and annual O\&M costs.	0.37	\$0. 99	\$0.51	0.1	4	6	150	2	20	9	229	6	60	463
1	R-42	Winter Haven Reuse Optlon H2 WWWTP Interconnects- 2. Winter Haven plans to interconnect Plant 2 \& Plant 3 (plant 3 upgrade completion scheduled for end of 2009) must be completed to serve the rematring 2,461 residental units. The intercomnection project cost is estrated at $\$ 12,836,100$. Deslgn and construcition of 20,400 linear feet of $8-16^{n}$ transmission main to connect to various residental subtlisislons. 2,461 residential units witha 75% hook-up tate $=1,846$ unils (600gpd per acilve customer). It is expected that there be a fow of 1.108 mg , with an offset of 0.554 mad ,	The City of Whater Haven Costs are based on The Cly of Whter Haven's 10-year Water Supply Plan	0.554	\$12.84	\$2.61	0.2	7.	9	- 223	2	20	6	141	7	70.	463

Long List			SourcelCalculations	Potential Quantity	Capital Cost	Unit Costs	Yteld (MGO)		Permittability		Additional Benen̆t		Cost Index (\$)		ImplementationTime		Total Score
tank	Code	Descriptlon				[sikgal)	Grade	Score	Grade	Score	Grade	Store	Grade	Score	Grade		
29	G-40	Winter Haven Water Department: Garden Grove W.T.P. Ground Water. Biending- This project would consist of bending Lower and Upper floridan well water. This concept would consist of dilling a new LFA well for new water supply. The new LFFA raw water supply in concept would be biended either with the existing UFA raw water supply or blended with the existing finished water foom the WTPs. Water quality and quantity will be evalualed to keep any additional treatment at a minlmum at sny facllly.	PCSWSp Cost analysis includes drilling a fower Floridan well(s). Capital Cosls only inctude the inital planting, pemitiling and destgn fees, as well as the Infrastructure construction costs, including land costs, legal fees and conlingencies. Unit cosis includes both captal and annual O\&M costs.	0.14	S0. 87	51.19	0.1	2	6	150	2	.20	8	200	9	90	462
30	6.51	Northeast! Regal In W.T.P. Ground Water Blending This project would consist of blending tower and Upper Floridan well water. This concept woudd consist of driling a new LFA well for new water supply. The new LFA raw water supply in concept would be blended either with the existing UFA raw water supply or blended with the existing finished water from the WTPs. Water quality and quantity will be evaluated to keep any additional treatment at a minhmum at any faclity.	PCSWSp Cost analysis includes drilling a lower Floriden well(s). Capital Costs unly include the inttat planning, pemiting and design fees, as well as the infrastructure consituction costs, including land costs, fegal fees and contingencies. Unit cosis lactudes both captal and annual O\&M costs.	0.07	50.87	\$2.37	0.0	1	8	200	2	20	6	151	9	90	462
3	6.43	Davenport: Davenoort W.T.P. Ground Water Blendling This project would consist of blending Lower and Upper Floridan well water. This concept woutd consist of drilling a new LFA weil for new water supply. The new LFA raw water supply in concept would be blended ether with the existing UFA faw water supply or blended with the exising finlshed water from the WTPs. Water quality and quantity will be evaluated to keep any addilionat treatment at a minhmum any faclity.	PCSWSP Cost analysis includes driting a lower Florldan well(s). Capital Cosis only Include the initial planalng, permititing and design fees, as well as the infrastructure construction cosls, including tand costs, tegal fees and contingencies. Unit cosls includes boih captal and annual O\&M costs.	0.17	50.80	\$0.98	0.1	2	6	$.150$	2	20	8	209	8	80	461
1	G.35	Winter Haven Watar Department: Winferset W.T.P. Ground Water blending This profect woutd consist of blending Lower and Upper Fioridan well water. This concept would consist of drilling a new L.FA well for new water supply. The new LFA raw water supply in concept would be blended either with the existing UFA raw water supply or blended with the exisiling finlshed waterf form the WTPs. Water quality and quantity will be evalualed to keep any addillonal treatment at a minimum at any facilly.	pcswsp Cost analysis inctudes driting a lower Floridan weli(s). Capital Costs only frclude the initial planting, permiting and design fees, as well as the Infastruclufe construction cosis, including land cosis, legal fees and contingencies. Unit costs includes bath capltal and annual O\&M cosis.	0.87	50.87	S0.98	0.1	2	6	150.	2	20	8	209	8	80	461
3	R-8	Auhumdate Westside Reqional WWIF Option Wi-USF ReclamedThis project would consist of supplying the University of South Fionda Laketand Campus wilh rectalmed water in an attempt to ellothate existing/future inigation groundwater withdrawal. In relum Aubumdale could gain addilional permitted capacity or other incentives. incentives such as: Increased water use permitted quantly, extended permit length, per caplta demand offsels, or oher incentives. A portion of the total quantly of reclaimed supplied may need to be given back to the upper Floridan aquffer. In-turn the quantity of recialmed water supplied for offsets woudd not be a one-to-one ratio of reclamed to ground water.	PCSWSP Quanity based on total reclaimed water avaliable from the Westside Regional WWTF in 2030. Quantity estimated to be 0.74 MGD of total reuse water. Caplail costs based on piping from Aubumdale to USF	0.74	\$11.08	82.71	0.3	9	9	225	2	20	5	137	7	70	461

Long List			Source/Calculations	Potential Quantity	$\frac{\text { Capital Cost }}{\text { Smill }}$	$\underbrace{\text { Unit Costs }}_{\text {(SKKgal) }}$	Yetd (MGD)30%		Permittability		Adtitional Beneit 10% 10%		$\frac{\text { Cost Index (\$) }}{25 \%}$		$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Implementation } \\ \text { Time } \end{array} \\ \hline 10 \% \\ \hline \text { Grade } \\ \hline \end{array}$		Total Score
ank	Code	Description --- - -					Grade	Score	Grade	Score	Grade	Score	Grade	Score			
34	R-56	Avon Park Correctlonal WWTP 2011-2030 Reuse Expansion The expansion of the distribution and transmission of reuse water throughout Avon Park Correclional Facillty.	RWSP Caplital Costs estmated using SWFWMD RWSP estimation of S3.62/Gallon for 2008, SWFWMD RWSP cost per gallon Inflated at 4\% per year to 2008 from 2005. Total Costs per Kgal calculated using amortized capltal cost over 30 years at a 5% inderest rate.	0.7	\$2.50	S0.83	0.3	8	7	175	2	20	9	215	4	40	458
35	G.47	Northwast: Lake Gibson W.T.P. Ground Water Blanding - This project would consist of blending Lower and Upper Fioridan well water. This concept would conslst of dilling a new LFA well for new water supply. The new LFA raw water supply in concept would be blended effer with the existing UFA taw water supply or blended with the existing Inished water from the WTPs. Water quality and quanlly will be evaluated to keep any additional freatment at a minimun at any facility.	PCSWSP Cost analysis meludes difling a lower Floridan wellis). Capital Cosis only Include the intial planing, permitting land design fees, as well as the infrastructure construction costs, including land costs, legal fees and coningencies. Unit costs Includes both capital and annual O8M costs.	0.13	\$0.87	\$1.28	0.1	2	6	150	2	20	8	197	9	30	458
36	R-55	Poik Co Correctlonal WWIP 2011-2025 Reuse ExpansIonThe expansion of the distribution and transmission of reuse waier throughout Folk Co. Correctlonal Facllity.	RWSP Capital Costs estimated using SWFWMD RWSP estimation of \$3.62/Galion for 2008, SWFWMD RWSP cost per gallon infater at 4\% per year to 2008 from 2005. Total Cosis per Kgat calculeted using amortized crapital cost over 30 years at a 5% interest rate.	0.21	S0.70	\$0.83	0.1	3	8	200	2	20	9	216	2	20	458
3^{7}	6.50	Northeast: Van Fleet W.T.P.. Grounc Water Blending This project would conslst of blending Lower and Upper Flonidan well water. This concept would consist of diliting a new LFA weil for new water supply. The new LFA raw water supply in concept would be blended etther with the existing UFA raw water supply or htended with the existing finished wazer from the WTPs. Water quality and quantily will be evaluated to keep any addilional trealment at a minimum at any faclity.	lecswsp Cost andysis includes drlling a lower Floridan well(s). Capilat Costs only froksode the litial-planning, permitang and design fees, as well as the Infrastucture construction costs. including land costs, legal fees and contingencles. Unlt cosis includes both caplial and arnual O\&M cosis.	0.49	\$1.17	\$0.46	0.2	6.	6	150	5	50	9	231	2	20	457
3^{8}	\sqrt{G}	Lake Wales: High Sohool. W.T.F... Ground Water ElendingThis project would consist of blending Lowet and Upper Floridan well water. This concept would consist of drilling a new LFA well for new water supply. The new LFA raw water supply in concept would be blended efher with the existing UFA raw water supply or blended with the existing finished water from the WTPs. Water quality and quantik will be evaluated to keep any additional treatment at a minimu at any facilly.	PCSWSP Cost analysis includes drilling a lower Foridan wells). Capital Costs onfy include the inthal planning, permiting and design fees, as well as the Infrastruchure consinuclion costs, including land costs, legal fees and contingencies. Unt cosis includes both capllal and annual O\&M costs.	0.32	\$0.99	\$0.59	0.1	4	5	125	2	20	9	225	8	80	454

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{Long List} \& \multirow[t]{2}{*}{Source/Calcuiations} \& \multirow[t]{2}{*}{Potential Quantity MSD} \& Capital Cost \& Unit Costs \& \multicolumn{2}{|l|}{Yield (MGD)} \& \multicolumn{2}{|l|}{Permittability} \& \multicolumn{2}{|l|}{AdotitionaI Benefit} \& \multicolumn{2}{|l|}{Cost index (s)} \& \multicolumn{2}{|l|}{Implementation Time} \& \multirow[t]{2}{*}{Total Score} \\
\hline Rank \& Code \& Description \& \& \& Smill \& (SIKgal) \& Grade \& Score \& Grade \& Scors \& Grade \& Score \& Grade \& Score \& \multicolumn{2}{|r|}{\[
\frac{\text { Brade }}{\text { Grad }}
\]} \& \\
\hline 39 \& E. 39 \& \begin{tabular}{l}
Whter Haven Water Bepartment: Ridge VO Tech W.T.P. Ground Water Biending - \\
This profect would consist of blending Lower and Upper Flordan well water. This concept would consist of dililing a new LFA well for new water supply. The new LFA raw water supply in concept woutd be blended either with the existing UFA raw water supply or blended with the existing finished water from the WTPs. Water quality and quantity will be evaluated to keep any addilitonal treatment at a minimum at any facilly.
\end{tabular} \& \begin{tabular}{l}
PCSWSP \\
Cost analysis includes driling a lowe Floridan well(s). Capital Cosis only includa the Initial planning, permiting and design fees, as well as the infrastucture consifuction costs, including land costs, legal fees and conlingencles. Unit costs Includes both capltal and annual O\&M cosis.
\end{tabular} \& 0.12 \& 50.87 \& \$1.38 \& 0.0 \& 1 \& 6 \& \[
150
\] \& 2 \& 20 \& 88 \& 193 \& 9 \& 90 \& 454 \\
\hline 39 \& G-46 \& Northwest: Timberldge Subdivision W.T. G. Ground Water Blendina This project would consist of blending Lower and Upper Floridan well water. This concept wauld consist of drilling a new LFA wall for new water supply. The new L.FA raw water supply fn concept would be blended either with the existing UFA raw water supply of blended with the existing fintshed water from the WTPs. Water qually and quandty will be evaluated to keep any additional treatment at a mininum at any facilly. \& \begin{tabular}{l}
PCSWSP \\
Cost analysis includes driling a lower Floridan well(s). Capital Cosis only include the initial planning, permitting and design fees, as well as the infrastructure construalion costs, including land costs, legal fees and contingencles. Unit costs includes both capital and annual OBM costs.
\end{tabular} \& 0.12 \& \$0.87 \& \$1.38 \& 0.0 \& 1 \& 6 \& 150 \& 2 \& 20 \& 8 \& 193 \& 9 \& 30 \& 454 \\
\hline 41 \& G-54 \& Northeast: Oak Hili W.T.P., Ground Water Blending This project would consIst of blending Lower and Upper Floridan well water. This concept would conslst of difling a new LFA well for new water slipply. The new LFA raw water supply in concept would be blended elther with the exjsting UFA raw water supply of blended with the existing finished water from the WTPs, Water quality and quantly will be evaluated io keep any additional treatment at a mintmum at any facility. \& \begin{tabular}{l}
PCSWSp \\
Cost analysis includes driling a lowe: Flotidan well(s). Capital Costs only include the inttial planning, permitting and design lees, as well as the infrastruchure construction cosis, including land costs, legal fees and contingenties. Unit costs Includes boih caplal and annal ORM costs.
\end{tabular} \& 0.18 \& \$0.87 \& \$0.93 \& 0.1 \& 2 \& 6 \& 150 \& 2 \& 20 \& 8 \& 241 \& 7 \& \[
70
\] \& 453 \\
\hline 42 \& G.3 \& Small Scate lrigation Systems/ Shallow Wells Thils category of projects would consist of developing rebate programs in which Polk Courty allows residentiat and small commerial customers to install an allemate supply for Irigalion such as shallow wells. Rebales will avalfable for a shallow well, deep well, or sufface water withdrawal systems such as man made lake, pond, or canal. Shallow wells can decrease publle water supply by \(30 \%\). The rebates would have values for up to \(50 \%\) of the cost of the installation with a maximum value of \(\$ 400\). Annusl participation of 75 accounts per year for 20 years. Initiai costs for research and development of \(\$ 110,000\). \& \begin{tabular}{l}
PCSWSP \\
Cost estimation based on the number of accounts, water saved per year, tebaie amount offered. Cosis only include both programs capital costs.
\end{tabular} \& 0.20 \& \$1.4 \& \$1.20 \& 0.1 \& 2. \& 6 \& 150 \& 5 \& \[
\text { - } 50
\] \& 8 \& 200 \& 5 \& 50 \& 452 \\
\hline 43 \& R-10 \& \begin{tabular}{l}
Auburndale Westside Reqlonal WWIF Opton \#3-Public Access Reuse System - \\
This project would consist of Auburndale using the net increase in reuse water to supply new developments with public access reuse. This will offset Auburndale's residential infigation demandss and could qualify Aubumdate to recelve other itcentives. Incentives such as: increased water use permitted quantily, extended pemall lengh, par capita demand offsets, or other hncentives.
\end{tabular} \& \begin{tabular}{l}
PCSWSF \\
Quanlity based on total reciaimed water avalable from the Westside Regional WWTF in 2030 . Quantity estmated to be 0.74 MGD of tolal reuse water. Capital costs based on estimated filtation, and disinfection.
\end{tabular} \& 0.74 \& \$1.88 \& \$0.52 \& 0.3 \& \(\because\)
\(\cdots\)
\(\therefore\) \& 7 \& 1-175 \& 2 \& \(\cdots\)
\(\because\)

20 \& 8 \& 228 \& 2 \& 20. \& 452

\hline
\end{tabular}

Long List			Source/Calculations	Potential Quantity MGD	Capital Cost	Unit Costs.	Ylaid (MGD)				Adoditional Beneflt		Cost Index (\$)		ImplementationTimeand		Total Score
Rank	Code	Description			[smil]	[Sikgal	Grade	Score	Grade	Score	Grade	Score	Grade	Score		10\%	
44	G-21	Halnes City: W.T.P. H2 Ground Water Blending- This project would consist of blending Lower and Upper Floridan wall water. This concept would cansist of dnlling a new LFA well for new water supply. The new LFA raw water supply in concept would be blended either with the existing UFA raw water supply or blended wih the existing Einished water from the WTPs. Water qualfy and quantity will be evaluated to keep any additionat freatment at a minimum at any facilly.	PCSWSP Cost analysis lacludes drilling a lower Floridan well(s). Capilal Costs onfy include the inital planing, permiting and design fees, as well as the Intrastructure construction costs, including land costs, fegal fees and contingencies. Unil costs Includes both caplat and annuat O\&M costs.	0.35	80.99	\$0.54	0.1	4	6	150.	2	20	9	228	5	50	452
45	G-32	Winter Haven Water Deparfment: 3 rd Street Water Plant Ground Water Blending - This project would consist of blending Lower and Upper Fiondan well water. This concept would conslst of drilling a new LFA well for new waler supply. The new LFA raw water supply in concept would be blended ether with the exsisting UFA raw water supply or blended with the existng flished water from the WTPs. Water qualliy and quantily will be evatuated to keep any addlitonal frealment at a minimum at any facilly.	Pcswsp Cost analysis includes driling a lower Floridan well(s). Capltal Costs only include the inillal planning, permitting and design fees, as well as the infrastructure construclion costs, including land costs, legal fees and coningences. Unit costs includes boih capital and annual O\&M costs.	0.34	\$0.99	\$0.55	0.1	4	6	150	2	20	9	227	5	50	451
$\sqrt{48}$	G-26	Lake Wales: Grave Ave. W.T.P., Ground Water BiandingThis project would consist of blending Lower and Upper Flotidan well water. This concept would consist of diliting a new LFA well for new water supply. The new LFA raw waler supply in concept would be blended elther wilh the existing UFA raw water supply or biended with the existing finished water from the WTPs. Water quality and quantity will be evaluated to keep any addilional trealment at a mhimum at any facilily.	PCSWSp Cost analysis inciudes dilling a lower Floridan well(s). Capital Costs only inctude the intlal planning, petriting fand design fees, as well as the Intrastucture construcilon cosis, inckuding land costs, tegal fees and contingencles. Unit cosis haclades both capital and annual O\&M costs.	0.29	50.88	50.58	0.1	3	6	150	2	20	9	226	5	50	449
47	R-41	Whter Haven Reuse Option \#H-Public Access Rause SystemWinter Haven plans to have reuse comections in 2009. These connections would serve 2,019 residental units with a 75% hook-up rate $=1,514$ units (enogpd per active customer). It is expected that there be a flow of 0.908 mg , with an offset of 0.454 mad .	The City of Winter Haven: Costs are based on The City of Winter Haven's 10 year Water Supply Plan	0.454	\$2.20	\$1.71	0.2	5	7	175	2	20	7	179	7	70	449
$\ddagger 8$	G-41	Winter Haven Water Department: Garden Grove W.T.P. Ground Water Blending - This project would consist of blending Lower and Upper Fioridan well water. This concept would consist of drlining a new LFA well for new water supply. The new LFA raw water supply in concept would be blended ether with the existing UFA raw water supply or blended with the existling finished water from the WTPs. Weter quality and quantity will be evaluated to keep any additional treatment at a minimum at any faciky.	pCSWSp Cost analysis includes drilling a lower Floridan well(s). Capltal Cosis onty include the initial planting, permitting and design fees, as well as the infrastructure construction costs, Including land cosls, legal fees and conlingencies. Unit cosis fincludes both captlal and annual o\& m_{m} costs.	0.11	\$0.87	\$1.51	0.0	1	6		2	20	7	187	9	90	448

Long List			Source/Calculations	Potental Quantity	Capitai Cost	Unit Costs	Yield (MGD)		Permiltability		Additional Benefit		Cost index (\$)		ImplementationTimse		Total Score
Rank	Code	Descripition			(fmil)	(SIKgal)	Grade	Score	Grade	Score	Grade	Score	Grade	Scare			
48	6.58	SouthwestiPolk Co Uility: Turner Foad W.T.P. Ground Water Elending This project would conslst of blending Lower and Upper Mlordan well water. This concept would consist of drlling a new L.FA well for new water supply. The new LFA raw water supply in concept would be blended either with the existing UFA raw water supply or blended with the existing finlshed water from the WTPs. Water quality and quantity will be evalualed to keep any additional treatment at a minimum at any facilly,	peswsp Cost analysis finciudes defling a lower Florldan well(s). Caplal Costs only include the intial planning, permiting and design fees, as well as the infrastructure construction costs. Inciuding land costs, legal fees and contingencies. Unik costs includes both caplai and annual O\&M costs.	0.17	\$0.87	\$0.98	0.1	2	7	475	2 2	20.	8	[209	4	\square \ddots 40	446
50	6.55	Northeast: Loma LInda W.T.P.. Ground Water BtendingThis profect would consist of blending Lower and Upper Fioridan well water. This concept would consist of dillithg a new LFA well for new water supply. The new LFA raw water supply in concept would be blended either with the existhng UFA taw water supply or blended with the existing finished water from the WTPs. Water quallity and quantily will be evaluated to keep any addillonal trealment at a mintmum at any facility.	PCSWSP Cost analysis includes driling a lower Flotidan well(s). Capital Costs only include the Inttai planning, permiting and design fees, as well as the Infrastructure construction costs, fincluding land costs, legal tees and contingencies. Unit cosis Includes both capital and annual O8M costs.	0.09	S0. 87	\$1.84	0.0	1	8	200	2	20	7	173	5	50	444
51	R-26	Lakoland: Glendale \& Northslde WWTF Option \#1-TECOThis prolect would consist of sending all reciamed water that is currently routed Wo Mcintosh Power Plant as well as future reclamed water to the TECO power facllty. Sending reciained water to TECO could gualily Lakeland for other incentives. Incentives such as: Increased water use permitied quantily, extended permit length, per capila demand offsels, of other incentives.	Pcswsp Costs will be based on reservalr size steeded for storage to allow TECO to be supplied with a constant flow of recialmed supply. Piping would be supplled by TECO.	13.2			5.3	158	9	225	2	20	0	0	4	40	443
51	R-27	Lakeland: Glendale. 2 Northside WWTF Opllon \#2- Publc Access Reuse. System- This project would consist of sending al tuture reclaimed water supplies to public access reuse. The reclamed water can potentlally be used for new developments public access teuse to offset Intigation demands and could quallfy Lakeland for other incentives. Incentives such as: Increased water use permitted quantity, extended permil tenglh, per capita demand offsets, or other incentives.	PCSWSP Quanlly based on total feclaimed water avaliable from the L.akeland WWTF In 2030. Quantity estimated to be 17.81 MGO of total reuse water. Capilal costs based on fransmitssion piping to new developments.	13.2			5.3	158	9	225	2	20	0	0	4	40°	443
53	G-B	Well field Sharing- This project would conslst of shatng Upper Fioridan wells throughout Polk County to optimize permit versus actual use and mintmize impacts. The concept of this project woutd consist of elher driling new wells or increased pumping of exisiling UFA wells to better match demands to permitted capacity, in some cases, some fnunicipalitles would lower their permilted capacity to allow others to Increase permitted capacily to meat their demands.	PCSWSP Cost Include well driling and fansfer pumping system. Unlt cosis include bolh capilal and O8M costs.	6.00	\$9.72	50.33	2.4	72	3	75	2	20	9	238	4	\bigcirc	443

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{Long List} \& Source/Caiculations \& \multirow[t]{2}{*}{Potential Quantlty} \& Capltal Cost \& Unal Costs \& \multicolumn{2}{|l|}{Yeid (MGD)} \& \multicolumn{2}{|l|}{Permittability} \& \multicolumn{2}{|l|}{Atiditional Benefit} \& \multicolumn{2}{|l|}{Cost Index (\$)} \& \multicolumn{2}{|l|}{\[
\begin{aligned}
\& \text { implementation } \\
\& \text { Time }
\end{aligned}
\]} \& \multirow[t]{2}{*}{Total Score} \\
\hline Rank \& Code \& Description \& \& \& [smil) \& (s/Kgal) \& Grade \& Score \& Grade \& Score \& Grade \& Score \& Grade \& Score \& \& de \& \\
\hline 54 \& G-48 \& \begin{tabular}{l}
Northwest: Indianwoods Sub W.T.P.. Ground Water Blending - \\
This project would consist of biending Lower and Upper Fiotdan well water. This concept would consist of driling a new L.FA well for new water supply. The new LFA raw water supply in concept would be blended ether with the existing UFA raw water supply or blended with the existing finished water from the WTPs, Water quallty and quantity wili be evaluated to keep any adotitional treatnent at a mintmum at any facility.
\end{tabular} \& \begin{tabular}{l}
PCSWSP \\
Cost analysis includes ditiling a lower Floridan welf(s). Capital Costs only include the intiat planning, permiting and design fees, as well as the Infrastruclure construction casts, including land costs, fegal fees and coniingencies. Unit cosis Includes both capltal and annual O8M costs.
\end{tabular} \& 0.10 \& \$0.87 \& \$1.66 \& 0.0 \& 1 \& 6 \& 150 \& 2 \& 20 \& 7 \& 181 \& 9 \& 80 \& 442 \\
\hline 55 \& 6.42 \& \begin{tabular}{l}
Central: Gardonvlle W.T.P.. Ground Water Blending- \\
This projecl would consist of blending Lower and Upper Floidan well water. This concept would consist of drilling a new LFA well for new water supply. The new LFA raw water supply in concept would be blended elther with the existing UFA raw waler supply or blended with the exising finished water from the WTPs. Water qualty and quantily whl be evaluated to keep any addilional treatment at a mintmum at any facllity.
\end{tabular} \& \begin{tabular}{l}
pCSWSP \\
Cost analysis includes driling a iower Fioriban well(s). Capital costs only finclude the initlat planning, perniting and design fees, as well as the Infrastructure construction costs, Including land costs, legal fees and contingencles. Unit costs includes both caplial and annual O\&M costs.
\end{tabular} \& 0.10 \& \$0.87 \& \$1.66 \& 0.0 \& 1 \& 8 \& \[
150
\] \& 2 \& 20. \& 7 \& \[
181
\] \& 9 \& 90 \& 442 \\
\hline 56 \& R-6 \& Aqricultural Reuse \(\ln\) Exchange for WUP IncentlvesThe concept of this category would be to use rectalmed water for agricultural. purposes. Reciaimed woter can be sent to agricultural faciltles in exchange for thelr potable water supplles or for some other hncentives. Incentives such as: increased water use permilted quantily, extended permil length, per capita demand offsels, or other incentives. \& \begin{tabular}{l}
PCSWSP \\
Costs include piping and valving to water users and potentlally expansion of wastewater facility to treat effluent to current reclaimed standards. Unit costs Include both caplal and 08 M costs.
\end{tabular} \& 20 \& \& \& 8.0 \& 240 \& 5 \& 125 \& 2 \& \% 20 \& 0 \& \(\therefore\) \& 5 \& 50 \& 435 \\
\hline 57 \& G-45 \& Northwest: Homestead Subdivision W.T.P., Ground Wazer Blending Thls project would conslst of biending Lower and Upper Flotidan well water. This concept would consist of driling a new LFA well for new water supply. The new LFA raw water supply in concept would be biended either with the existing UFA raw water supply or blended with the existing finished water fom the WTPs. Water quallty and quanilty will be evaltated to keep any addilional treatment at a motmum at any faclity. \& \begin{tabular}{l}
peswsp \\
Cost analysis tncludes driling a lower Foridan well(s). Captal Costs ony include the intial planning, permiting and design fees, as well as the infrastructure constructlon costs, inciuding land costs, legal fees and contingencies. Unil costs inctudes both caplial and annual O\&M costs.
\end{tabular} \& 0.09 \& 50.87 \& \$1.84 \& 0.0 \& \(\because\)
\(\ddots\)
\(\ddots\)
\(\ddots\)
\(\ddots\)
\(\because\) \& 6 \& 150 \& 2 \& 20 \& 7 \& 173 \& 9 \& 90 \& 434 \\
\hline 58 \& G-29 \& \begin{tabular}{l}
Mulberry: Mulbervy Plant \#1 Ground Water Blending- \\
This project would consist of blending Lower and Upper Flondan well water. This concept would consist of trilling a new LFA well for new water supply. The new LFA raw waler supply in concept would be bended ether with the existing UFA raw water supply or blended with the existing finished water from the WTPs. Water quality and quantly will be evaluated to keep any additional treatment at a minimum at any facillty.
\end{tabular} \& \begin{tabular}{l}
pcswsp \\
Cost analysis includes drilling a lower Floridan well(s). Capital Costs only Include the initial planning, permitting and design fees, as well as the infrastructure consinuclion costs, Including land cosis, legal fees and contingencies. Unit costs fincludes both caplal and annual O\&M costs.
\end{tabular} \& 0.09 \& 50.87 \& \$1.84 \& 0.0 \& 1 \& 6 \& \[
150
\] \& 2 \& 20. \& 7 \& \[
173
\] \& 9 \& \(\because\)
\(\because\)
\(\cdots\)

90 \& 434

\hline
\end{tabular}

Long List			Source/Calculations	Potentlat Quantly	$\underset{\text { Capital Cost }}{\text { (Smill }}$	Unit Costs	Yeld (MGD)		Permiltablity		Addtlonal Eenefit		Cost index (5)		$\begin{gathered} \text { Implementation } \\ \text { Time } \end{gathered}$		Total Score
Rank	Code	Description				(Sikgal)	Grade	Score	Grade	Score	Grado	Score	Grade	Score	$\frac{10 \%}{\text { Grade }}$		
59	©-60	Southwes UP olk Co. Utility: Gus Stewart W.T.P. Ground Water Blending This profect would consist of blending Lower and Upper Flofdan well water. This concept would consist of drilling a new LFA well for new water supply. The new LFA raw water supply in concept would be blended elther with the existing UFA raw water supply or blended with the existing finished water from the WTPs, Water qually and quantly will be evaluated to keep any addtional freatment at a minimum at any facllify.	PCSWSP Cost analysis includes drilling a lower Floridan well(s). Capital Costs only include the initial planning, permitting and design fees, as well as the Infrastructure consinuction costs, lncluding land costs, legal fees and conlingencles. Unil costs includes both capital and anual O\&M cosss.	0.22	\$0.87	90.76	0.1	$: 3$	6	150	2	20	9	218	4	40	431
60	G-2	Regional Water Gric System- This project would consist of the construction of a reglonal gide system (water transmisslon main grid) with local Interconnects that would allow for the transport of water supply throughout the couriy. The grid system would be similar to a power system In which separate municipalities can sell water to the grid sysiem when in supplus andior buy 1 when In demand. Cumenily there Is a 6 migd surplus of permitted but not pumped water throughout Polk County. This water can be shifted from clyy to city to accommodate deficils using surplus. Fufure supplies of water cutslde of the county can easily be added to the counly once a regional grid system is constucted.	pCSWSP The cost includes 90 miles of transmission main piping, valves and booster pump stations. Capital Cosis only include the initial planning, permiting and design fees, as well as the infrastructure construciton costs, inchuding land cosis, legaf fees and contingencies. Unit cosis includes both capital and annual O\&M cosis.	6.00	\$226.3	\$7.21	2.4	72	9	225	10	100	0	0	3	30	427
61	G-52	Northeast: Edgebili W.T.P. Ground Water Blending- This project would consist of blending Lower and Upper Flondan well water. This concept would consist of driling a new L.FA well for new water supply. The new LFA raw water supply in concept would be blended elther with the existing UFA raw water supply or blended with the exising finlshed water from the WTPs. Water quality and quantity will be evaluated to keep any addilional treatment at a mininum at any facility.	pcswsp Cost analysis fincludes driling a lower Floridan well(s). Capital Cosis only include the intiol planning, permiting and design fees, as well as the Infrastructure construction costs, including land costs, legal fees and contingencles. Unit costs includes both captal and annual ORM costs.	0.12	\$0.87	\$1.38	0.0	1	6	150	2	20	8	193	6	60.	424
52	G-57	East: Sunalr Country Club W.T.P., Ground Water Elending- This project would consist of blending Lower and Upper Floridan well water. This concept would consist of dilling a new LFA well for new water supply. The new LFA raw water supply in concept would be blended efther with the exising UFA taw water supply or blended with the existhy finshed water from the WTPs. Water qually and quanlly will be evaluated to keep any additional treatment at a minimum at any facility.	PCSWSP Cost analysis includes drilling a tower Floridan weil(s), Capital Costs only include the intial pianning, pemiting and design fees, as well as the infrastructure construction costs, Including land costs, legal fees and contingencles. Unit costs includes both capttal and annuel O\&M costs.	0.05	\$0.87	\$3.31	0.0	.1	8	200	2	20	4	112	9	90	423
63	R-4	Reqianal Reclalmed Water Interconnects- The concept of this category wauld be to destign and construct interconnected reciained systems to allow for more effertive systems in higher development areas. New developments or ctirent dry lines that currently do not have enough supply 10 meet peak reuse demands.	pCSWSP Costs esthmated from piping and pumping. Unitt costs include both capital and O\&M cosls.	20			8.0	240	4	100	4	40	0	0	4	49.	420

Long List			SourcelCatculations	Potential Quantlity	Captal Cost	Unit Costs	Yiedd (MGD)				Additional Beneflt		Cost Index (\$)		ImplementationTimeTos		Total Score
Rank	Code	Description			(smil)	[SMgal)	Grade	Score	Grade	Scare	Grade	Score	Grade	Score	$\frac{10 \%}{\text { Grade }}$		
63	$8-1$	Supplement Large Water Users with reclalinet Water In Exchange for WUP incentives - The concept of this category is to ldentify and supply large water users currently ufilizing polable water to saltfy a non-potable water demand with rectalmed water in exchange for all or a portion of their water use permill quantities or to obtain other incentives. Benefits of ints include supplying a consistent amount o water and avoiding the inconsistent demand of lrigation users. included in the effort should be seiting a standard pollcy and procedure for issuing incentives to utilities using reclaimed water in an environmentally beneficlal way, Incentives such as: increased water use permitted quantity, extended permit length, per capita demand offsets, or other incentlves.	PCSWSP Costs inctude ppiping and valving to water users and potential expansion Iof wastewater faclity(s) to treat effluent fo current reclaimed slandards. Unit costs Include both caplal and 08M cosis.	20			8.0	240	4	100	3.	30	0		5	50	420
65	R-3	RiES (Rabld infiltration Rasins): The concept of this category would be to ulize stomwater caphure ponds, minng ponds, or recizimed water throughout Polk County for RIBS. Implementation of RIBS could provide the user with incentives. Incentives such as: Increased water use permitted quanlity, extended permit length, per capita demand offsets, or other incentives.	pesws? Costs based on tonventional rapid Inflitration basins. Unit cosls include both capilal and O8M costs.	20			8.0	$\stackrel{240}{\square}$	\pm	- 25	5	50	0	\bigcirc	10	100	415
66	G-19	Frostpragi Frostpraof W.T.P. H3 Ground Water Blendina- This project would consist of blending Lower and Upper Florldan well water, This concept would consist of difling a new LFA well for new water supply. The new LFA raw water supply in concept would be blended elther with the existing UFA raw water supply or blended with the existing finished water from the WTPs. Water quallity and quantity will be evaluated to keep any addilional freatment at a minimum at any facilly.	PCSWSp Cost analysis Includes drilling a fower Floridan well(s). Capital Costs only Thelude the inmal planning, permiting and design fees, as well as the infrasifucture construction cosis; Including land costs, legal fees and contingenteles. Unit costs includes foth raplial and annual O\&M costs.	0.07	\$0.87	\$2.37	0.0	1	6	150	2	20	ถ	151	9	90	412
67	R-2	Agufiar Rechatge and Recovery (ARR). The concept of this category would consist of using wastewater effluent, that is not being reused, for aquifer recharge and recovery. mplementation of ARR could provide the user wilh incenilves, incentives such as: increased water use pernitted quantly, exiended permit length, per capita demand offsets, or other incentlves.	PCSWSP Cosis based on conventional aquifer recharge recovery systems. Unit costs include both capitiaf and O8M costs.	25			10.0	\cdots	1	25	1	10	0	0	7	\cdots 70	405
¢8	S-2	SuriacelStormwater Ponds:- This project would conslst of utilizing lake systems or stomwater ponds as a small amount of supplemental use or constant supply. The surface water source is proposed to be used as a supplemental source for recialmed water throughout the NE Polk County Reglon,	PCSWSP Quantily per hydraullc modeling done by PCSWSP. Cost estmates based on chlorine disinfection system, high service pumping, and reservoir, Unir costs are capital and O\&M cosis.	0.8	. $\$ 13.3$	\$3.93	0.3	10	7.	475	3	30	3	85 8	10	100	401
69	©-15	Dundee: Lake Ruh Wh.P. H1 Ground Water Blending - Thls project would conslst of blending Lower and Upper Floridan well water. This concept would constst of drilling a new LFA well for new water supply. The new LFA raw water supply in concept would be blended either with the exising UFA taw water supply or blended with the existing fintished water from the WTP's. Water quallity and quantity will be evaluated to keep any additional treatment at a minimum at any faclity.	PCSWSP Cost analysis inctudes driling a lower Floridan well(s). Capital Costs only include the initial planning, permiting and design fees, as well as the infrastucture construction cosis, including land costs, legal fees and contingencles. Unit costs includes both capltal and annual O\&M cosis.	0.06	\$0.87	\$2.71	0.0	1	6	150	2	20	5	137	9	90	398

Long List			Source/Catculations	Potentlal Quantity	Capital Cost	Unit Costs	Yeild (MGD)		Permitability		Additiona! Beneff		Cost index (5)		$\begin{aligned} & \text { Implementation } \\ & \text { Time } \end{aligned}$		Total Score
Rank	code	Lake Harillon: Lake Hamilton W.T.P. Ground Water Blendil			(Smili)	(SIKgal)	Grade	Score	Grade	Score	Grade	Score	Grade	Score		rade	
70	G-23	Thls project would consist of blending Lower and Ujpper Floridan well water. This concept woudd consist of dilling a new LFA well for new water supply. The new LFA raw water supply in concept would bs blended elther with the existing UFA raw water supply or blended with the exlsing finished water from the WTPs. Water quallty and quanlity will be evaluated to keep any additional treatment at a minhum at any faclify.	PCSWSP Cost analysis hcludes dililing a fower Flarldan well(s). Capital Cosis only Include the hillai pianning, permiling and design fees, as well as the infrastucture construction costs, including land costs, legal fees and contungencles. Unit cosls fncludes both capital and annual O8M costs.	0.06	\$0.87	\$2.76	0.0	1	6	450	2	20	5	135	9	.90	396
71	6-43	Central:Tanamora W.T.P.. Ground Water Blending - This project would consist of blending Lower and Upper Floridan well water. This concept would consist of drilling a new LFA well for new water supply. The new LFA taw water supply in concept would be blended either with the existing UFA raw water supply or blended with the existing finished water from the WTPs. Water quality and quantity will be evaluated to keep any additional treatment at a minimum at any faclity.	PCSWSP Cost analysis includes drilhing a lower Floridan well(s). Capital Costs only include the initial planning, permitting and design fees, as well as the infrastructure consituction costs. inctuding larid costs, legal fees and conilingencies. Unil cosis hnciudes both caplial and annual O\&M costs.	0.08	\$0.87	\$2.07	0.0	4	6	150	2	20	7	164	6	60	395
72	6.53	Northeast: Poic Davenport W.T.P., Ground Water BlendingThis project would consist of blending Lower and Upper Floridan well water. This concept would conslst of dilling a new LFA well for new water supply. The new LFA, raw water supply in concept would be blended ether with the existing UFA raw water supply or blencied with the exisfing finished water from the WTPs. Water quellity and quantily will be evaluated to keep any additional treatment at a minimum at any facllity.	pcswsp Cost analysls includes drining a lower Floridan well(s). Capital Costs only include the inflial planning, permiting and design fees, as well as the infrastructure construction cosls, fnctuding land costs, legal fees and conlingencies. Unit cosis thcludes both capilat and annual $\mathrm{O} \& \mathrm{M}$ costs.	0.05	\$0,87	\$3.31	0.0	1	8	200	2	20	4	112	6	60	393
72	G.59	SouthwestIPolk Co. UHIty; Valley Vlew W.T.P. Ground Water Blanding This project would consist of blending Lower and Upper Flondan well water. This concept would consist of drlling a new LFA well for new water supply. The new LFA raw water supply in concept would be bfended eliber with the existing UFA raw water supply or blended with the existing finshed water from the WTPs. Water qually and quantity will be evaluated to keep any addilional treatment at a ninlmum at any facilly.	PCSWsp Cost analysis includes dilling a lower Flotidan well(s). Capital Costs anly fnclude the trital planning, permiting and design fees, as well as the Infrastruclufe construction costs, including land costs, legal fees and coningencies. Unit costs includes both capital and annual OQM costs.	0.05	\$0.87	\$3.31	0.0	1	8	200	2	20	4	112	6	50	393
72	G-62	SoutheastPolk Co, Utiliy: Polk Courty Jall W.T.P. Ground Water Blending This project would consist of blending Lower and Upper Floridan well water. This concept would consist of drilling a new LFA well for new water supply. The new LFA raw water supply in concept would be blended either with the existing UFA raw water supply or blended with the existing finished water from the WTPs, Water qually and quantify will be evaluated to keep any addtional treatment at a minimum at any faclity.	peswsp Cost analysis includes driling a lower Fioridan well(s). Caplat Costs only include the filtal planning, perniting and design fees, as well as the infrastructure consitruction cosis, including land costs, legal fees and coningencies. Unit costs Includes both capital and annual $0 \& \mathrm{M}$ costs.	0.05	\$0.87	\$3.31	0.0	1	8	200	2	20	4	-112	6	- 6	393

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{Long List} \& \multirow[t]{2}{*}{Source/Calculations} \& \multirow[t]{2}{*}{\begin{tabular}{l}
Potential Quantity \\
MGD
\end{tabular}} \& \multirow[b]{2}{*}{\[
\frac{\text { Capital Cost }}{(\operatorname{smil})}
\]} \& Unit Costs \& \multicolumn{2}{|l|}{Yteld (MGD)} \& \multicolumn{2}{|l|}{Permitablity} \& \multicolumn{2}{|l|}{Additional Bencif} \& \multicolumn{2}{|l|}{Cost index (\$)} \& \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { Implementation } \\
\text { Time }
\end{gathered}
\]} \& \multirow[t]{2}{*}{Total Scare} \\
\hline Rank \& Cade \& Description \& \& \& \& STKgall \& Grade \& Score \& Grade \& Score \& Grade \& Score \& Grade \& score \& \& ade \& \\
\hline 75 \& G.38 \& \begin{tabular}{l}
Winter Haven Water Deparment: Eliolse Wood W.T.F. Ground Water Blending - \\
This prolect would consist of blendlag Lower and Upper Flofidan well water. This concept would consist of drilling a new LFA well for new water supply. The new LFA. raw water supply in concept would be blended ether with the existing UFA raw water supply or blended with the exlsting finished water from the WTPs. Water quality and quantity will be evalualed to keep any addillonal treatment at a minhinum at any faclity.
\end{tabular} \& \begin{tabular}{l}
PCSWSP \\
Cost analysis includes driling a lower Floridan well(s). Capital Cosis only include the lnitlat planning, permbling and design fees, as well as the infrastructure construction costs, Including land costs, legal fees and contingencles. Unit cosis includes both capital and annual \(O 8 M\) costs.
\end{tabular} \& 0.07 \& 50.87 \& \$2.37 \& 0.0 \& \& 6 \& 150 \& 2 \& 20 \& 6
6 \& 151 \& 7 \& 70 \& 392 \\
\hline 76 \& R-16 \& Bartow: Clty of Bartow WWTF Option \#1.Proaress Eneray HinesThis project would consist of continulng to send all rectalmed water supply to Progress Energy Hines Complex for cooling water. Pok County Ubilles plans to close the Central Reglonai WWTF and divert all flows to the Clly of Bartow WWTF. The Clty of Bartow plans to send all addtional tedalmed water flows to the Hines Complex. In turn, the city can polentially acquire water supply fincentivas such as increased water use pemnit, extension of pernit, per capita demand offsets or other incentlves. \& \begin{tabular}{l}
PCSWS: \\
Quantity based on tolat reclatmed water available from the Battow WWTF in 2030. Quantly estimated to be 6.84 MGD of tolal reuse water. Capital costs based on increased pipe size to the Progress Energy Hines.
\end{tabular} \& 5.9 \& \& \& 2.4 \& 71 \& 9 \& \(\square\)

225 \& 2 \& 20 \& 0 \& 0 \& 7 \& 70 : \& 386

\hline 76 \& R-17 \& Bartow: Clty of Bartow WWTF Option \#z - Pubilc Access Reuse SystemThis profect would consist of sending all future fecialmed water supply to public access reuse. Polk County Utilites plans to close the Central Reglonal WWTF and divert all flows to the Cly of Bartow WWTF. The Cily of Bariow can use future recialmed flows for residental migation to offset patable water demand and could qually Bariow for oher ficentives, Incentlves such as: Increased water usse permitted quantly, extended permik length, per capla demand offsets, or other incentives. \& | PCSWSP |
| :--- |
| Quantity based on fotel reclamed water avallable from the Alfed WWTF in 2030. Quantity estimated to be 5.84 MGD of total reuse water. Capital costs based on transmission plping to new developments. | \& 5.9 \& \& \& 2.4 \& \because

$\because 1$
\because
\because \& 9 \& 285 \& 2 \& 30
\because
\therefore \& 0 \& 0 \& 7 \& 70 \& 386

\hline 76 \& R-44 \& | NERUSA.PCU: Northeast Regional WWTF Option H- Public Access Reuse System. |
| :--- |
| This project woutd consist of sending rectaimed water llow to de used for public access. Using the reclained water to offset Irigation demands could qualiliy PCU for fincentives. Incentives such as: increased water use permitted quantly. extended permit tength, per capita demand offsets, or other incentives. | \& | PCSWSP |
| :--- |
| Quanlity based on tolal reclaimed water avallable from the NERUSAPCU Northeast Reglonal WWTF in 2030. Quantity estimated to be 7.87 MGD of total reuse water. Capital cosis based on transmission piping to new developments. | \& 5.9 \& - \& - \& 2.4 \& 71 \& 9 \& \[

225

\] \& 2 \& \[

20
\] \& 0 \& 0 \& 7 \& 70 \& 386

\hline 76 \& R-45 \& NERUSA-PCU: Northeast Recloral WWIF Ontlon H2 CemexThis prolect would consist of PCU sending future reclaimed water fows to a Cemex. Sending the reclalmed water to Cemex could provide the city wilh incentives. Incentives such as: increased water use permited quantity, exiended permit lenglh, per capita demand offsets, or other incentlves. \& | PCSWSP |
| :--- |
| Quantity based on total reclamed water avaliable from the NERUSAPCU Northeast Regionel WWTF in 2030. Quantity estinated to be 7.87 MGD of lotal reuse water. Capital costs based on transmisslon plping to the Cemex. | \& 5.9 \& * \& - \& 2.4 \& 71 \& 9 \& \[

225

\] \& 2 \& | 20 |
| :---: |
| |
| \therefore | \& 0 \& 0. \& 7 \& 70 \& 386

\hline 80 \& R-22 \& Frosteroof: Frostproof WWTF Option \#1-Carqill indusirial Raclaimed This project woutd consist of Frostproof sending all future reclaimed flows to Cargll Industries. Frostproof coudd polendialiy recelve incentives such as an herease in water use permit quantly, extenslon of permit length, per capita demand offsels or olher incentlves. \& | PCSWSP |
| :--- |
| Quantily based on total recteimed water avallable from the frostproof WWTF in 2030. Quantily estimaled to be 5.37 MGD of total reuse water. Capital costs based on increased pipe size to Cargil Industries. | \& 5.37 \& \& \& 2.1 \& \because

\square
\therefore \& 9 \& \because
\because
$\because 25$
\because \& 2 \& - 20 \& 0 \& 0 \& 7 \& \cdots \& 379

\hline
\end{tabular}

Rank Code loseription Long List			SourcelCalculations	Potental Quantity	$\underset{\text { Caplai Cost }}{\text { (Smil) }}$	Unlt Costs	Yield (MGD)		Permittability		Additiona! Benefit 10%				Implementation Time		Total Score
	Code					(SMgal)	Grade	Score	Grade	Scare	Grade	Score	Grade	Score		ade	
81	G-14	This project would consist of blending Lower and Upper Floridan well water, This concept woutd consist of drilling a new L.FA well for new water supply. The new L.FA raw water supply in concept would be blended ether with the existing UFA raw water supply or blended with the existling finished water from the WTPs. Water quality and quantly will be evaluated to keep any addillonal treatment at a minimum at any facilly.	poswsp Cost anelysis includes difling a lower Floridan well(s). Caplal Costs only Include the hnital planning, permitting and design fees, as well as the infrastructure construction cosis, Including land costs, legal fees and contingencles. Unit costs includes both capital and annual $O 8 M$ costs.	0.05	50.87	\$3.31	0.0	1	${ }_{6} 6$	\because \because \ddots 150	2	20	4	112	9	90	373
$\sqrt{8}$	G-28	Lake Wales: Market Street W.T.P. Ground Water Blending- This prolect would consist of blending Lower and Upper Floridan weil water. Thls concept would consist of dililing a new LFA well for new water supply. The new LFA raw water supply in concept would be blended either with the existing UFA raw water supply or blended with the existing finished water from the WTPs. Water qually and quanily wll be evaluated to keep any addillonal treatment at a minimum at any facilly.	poswsp Cost analysts lncludes driling a lower Floridan well(s). Capital Costs only inciude the hillai ptanning, permitting and design iees, as weil as the infrastruclure construction costs, including land costs, legal fees and contingencies. Unit costs includes bolh capltal and annual O8M costs.	0.05	\$0.87	\$3.31	0.0	1.	6	150	2	$1-20$	4	112	3	90	373
82	c-34	Polk Clty Bouralnvila Plant Ground Water Blandinq- This project would consist of blending Lower and Upper Flofidan well water. This concept woutd consist of dritling a new LFA well for new water supply. The new L.FA raw water supply in concept would be blended either with the existing UFA raw water supply or blended whit the existing finished water from the WTPs. Water quality and quantly will be evalualed to keep any addltonal freatment at a fonlmum at any faclity.	pcswsp Cost analysis hncludes driling a fower Floridan well(s). Capital Cosis only include the intitias planning, permitting land design fees, as well as the Infrastructure consfruction costs, including land costs, legal fees and contingencles. Unit cosis inciudes both capidal and annual O\&M costs.	0.05	\$0.87	\$3,3i	0.0	1	5	150	2	20	4	\$12	9	30	373
82	6-36	Winter Haven Water Department: Cypresswood W.T.P. Ground Water Blending - This prolect would consist of blending Lower and Upper Floridan well water. This concept would consist of drilling a new L.FA well for new water supply. The new LFA raw water supply in concept wotld be biended either with the existing UFA raw water supply or blended with the existing finished water from the WTPs. Waler qually and quartly will be evaluated to keep any addtional treatment at a minlonum at any faclity.	PCSWSP Cost analysis includes ditling a lower Flofidan well(s). Capllal Costs only haclude the Initial planning, permiting and design fees, as well as the Infrastuucture construction costs, including land costs, legal fees and contingencles. Unit costs includes bolh caplial and annual O\&M costs.	0.05	\$0.87	\$3.31	0.0	1.	6	\square \because \because $\because 150$	2	20	4	112	9	90	373
85	G-18	Frostproof: Frostoroof W.T.P. \#2 Ground Water Blending - This profect woutd consist of blending Lower and Upper Flordan weil water. This concept would consist of drilling a new LFA well for new water supply. The new LFA raw water supply in concept would be blended ellher with the existing UFA raw water supply or blended with the existing finished water from the WTPs. Water quallty and quantity will be evaluated to keep any additional treatment at a minimum at any facility.	PCSWSP Cost analysts includes driling a lower Floridan well(s), Capial Costs only include the frillat planning, parmitting and design fees, as well as the Infrastructure construetion costs, Including land costs, legal fees and contingencies. Unil costs includes both capital and anual O\&M costs.	0.05	\$0.87	\$3.31	0.0	1.	6	150	2	\bigcirc	4	112	9	\square \square	373

[^1]Highlophted Projetts = Cozegofies

Long List			Source/Calculations	Potential Quantity MGD	$\frac{\text { Capital Cost }}{\text { (Smill })}$	Unit Costs	Yield (MGD)		Permitability		Additional Beneñ		Cost index (\$)		$\underset{\substack{\text { Implementation } \\ \text { Time }}}{ }$		Total Score
Rank	Code	Dascription				(sikgal)	Grade	Score	Grade	Score	Grade	Score	Grade	Score	$\frac{10 \%}{\text { Grade }}$		
86	R-14	Sartow, Ft. Meade, Multerry: Reclaimed to Hilies Complax- This profect would consist of supplying Progress Energy with reclamed water from Mulberry, Fort Meade, and Bartow instead of polable water in exchange for WUP incentives. An estimated 25 miles of piping will be used to transier reclaimed water from Bartow to the Hilnes Energy Complex, Bartow could also recelve rectaimed waler from other faclilites and then use its pumps and plpes to send to Progress Energy. by sending thelr reclaimed to Hines, the cilies could qually for incentives. Incentives such as: increased water use permitted quantity, extended permitlength, per capla demand offsets, of of her intentives.	pcswsp Quantity based on lotal reclemed water avallable from the Bartow, Ft Meade, and Mulbery WWTFs in 2030. Quantly estimated to be 8.34 MGD of total reuse waler. Capital cosis based on increased pipe size to the Hines Complex	7.0			2.8	84	9	225	2	20	0	Scor	4	40.	369
85	$\mathrm{R}-45$	Bartow, Ft. Meade, Mulberry Reclalmed to Polk Power Partners: This project would consist of supplying Pok Power Partners L.L.C, with reclalmed water from Mulberry, Fort Meade, and Bartow instead of potable waler in exchange for WUP incentives. An astmated 7 miles of plping will be used to transfer reciamed waler from Bartow to the Polk Power Partners L.C. Bartow could also receive reclalned water from other facillies and then use its pumps and plpes to send to Progress Energy. By sending their reclaimed to Polk Power Pariners LLC, Ihe cilies could qualify for incentives, Incentlves such as: Increased waier use permitted quantity, extended permit lengih, per capita demand ofisels. or oher incentives.	PCSWSP Quantly based on total reclamed water avaliable from the Bartow FL . Meade, and Mulbery WWTFs in 2030. Quantity estimated to be 8.34 MGD of total reuse water. Capital costs based on hcreased plpe size to the Polk Power Partners LLC.	7.0			2.8	84	9	. 225	2	20	0	0	4	40	359
88	R.52	SWRUSA-PCU: Southwest Reqlonal WWTF Option \#1 - Public Access Rause System- This prolect would consist of sending reclalmed water flow to be used for publle access. Using the reclaimed water to offset lrigation demands could qually PCU for incentives. Incenives such as: Increased water use pemitted quantily, extended permitlength, per caplta demand offsets, or other Incentives.	PCSWSP Quantily based on total reclaimed water avalable from the SWRUSAPCU WWTF in 2030. Quantily estmated to be 2.16 MGO of total reuse water. Capital costs based on fransmisslon piping to new developments.	2.46	-	-	0.3	25	9	225	2	20	0	0	7	70	341
89	R-24	Haines Clty: Halnes Clfy WWTE Option \#2 - Public Accees Reuse SystemThis project would consist of sending all futura increases in recialmed water to public access reuse. This will offset Halnes City's residential frigalion demands and coutd qually Haines Cly for other fincentives. Incentives such as: Increased water use permilted quantity, extended permit length, per capita demand offsets, or other Incentives.	peswsp Quantity based on total rectamed water avallable from the Haines Cify WWTF in 2030. Quantly estmated to be 2.12 MGD of total reuse water. Caplaf tosts based on fransmission piping to new developments.	2.12			0.8	25	9	225	2	20	\bigcirc	0	7	70	340
90	R-23	Haines CIty: Haines Cliy WWTE Optlon\#1 - Greenelefe Resort Ulilly.This profect would consist of using techamed water to supply the Greenelefe Resort Uullyy to meet their infgallon needs. In fetum Halnes City could acquite a portion of the Greenelefe Resort Ulltiles water use permit or qualify for other incentives. incentives such as: hcreased water use pemilted quantly, extended permit tength, per capita demand offets, or other incentives.	PCSWSP Quantity based on total sectaimed water avallable from the Halnes City WWTF in 2030. Quantity estimated to be 2.1 MGD of tatal reuse water. Capital cosis based on increased pipe size to the Large Water User.	2.1			0.8	25	9	225	2	20	0	0	7	70	340
91	G-17	Erostpropf: Frostpronf W. T. P. \#1 Ground Water Blandina- This project would consist of blending Lower and Upper Floridan well water. This concept would consist of dilling a new LFA well for new water supply. The new LFA raw water supply in concept would be blended elther with the existing UFA raw water supply or blended with the exlsing finished water from the WTPs. Water qually and quantity will be evaluated to keep any additiona! treatment at a minimum at any fatilly.	pcswsp Cost analysis includes drilling a lower Fioridan well(s). Capital Costs only inciuda the Inilial planning, permitting and design fees, as well as the infrastructure construction costs, including land costs, legal fees and contingencies. Unit costs includes both capital and annual 08M costs.	0.04	\$0.87	S4.13	0.0	0	6	150	2	20	3	78	9	\because \because 30	338

Long List			Source/Calculations	Potentiat Quantity	$\frac{\text { Caplal Cost }}{\text { (Smill }}$	Unit Costs	Yield (MGD)		Permitabillty		Additional Beneflt		Cost index (\$)		Implementation Tlme		Total Score
Rank	Code	Description -				(sikgai)	Grade	Score	Grade	Score	Grade	Score	Grade	Score	$\frac{10 \%}{\text { Grade }}$		
92	R. 31	Lake Wales: Lake Wales WWTF Dotlon H1 - Mountan Lakes Estates \& Goff club - project could consist of sending all future reclalmed water to Mountain Lakes Estates and Golf Club to meet trigation needs. Supplying Mountaln Lakes Estates and Golf Club with irigation water may allow Lake Wales to extend thell water use permill length, offset per capita demands or increase thelr water use permil quantly.	PCSWSP Quantily based on total feclaimed water avalibile from the Lake Wales WWTF in 2030. Quantly estimated to be 1.91 MGD of lotal reuse water. Capital costs based on transmission piping to the Mountain Lakes Estates and Colf Club.	1.91			0.8	23	9	225	2	20	0	\cdots	7	70	338
93	R.3s	Winter Haven: City of Winter Haven WWIF :2 Opton \#1- Publlc Access Reuse System- This project would consist of Winter Haven sending future reciamed water fiows to publlo reuse. The reclained water for publlic access reuse could offset Intigation demands and coutd quallif Winter Haven for Incentives. Incentives such as; Increased water use permitled quantly, extended permit length, per capita demand offsels, or other incentlves.	PCSWSP Quantity based on total recialmed water available from the Winter Haven WWTF \#2 in 2030 . Quandly esilmated to be 1.67 MGO of total reuse water. Capital costs based on transmission piping to new develicpments.	1.67			0.7	20	9	225	2	20	0	0	7	70	335
93	$\mathrm{R}-48$	Winter Haven: Clfy of Whater Haven WWTF \& Option \#2-Prograss Energy - This project would consist of Winter Haven sending futute reclamed water Hows to Progress Energy. Curfent and future interconnectlons would allow recfaimed fows to be sent via other ciltes. Sending the rectamed water to Pragress Energy could proulde the city wilh incentives. Incentlues such as: Increased water use permitied quantity, exdended permit length, per capta demand offsels, or other lncentives.	PCSWSP water available from the Winter Haven WWTF \#2 in 2030. Quankly estimated to be 1.67 MGO of total reuse water. Capital cosis based on transmission plping to Progress Energy.	1.67			0.7	20	9	225	2	20	0	0	7	70	335
95	S-14	Peace Rlver at Ft. Meade- This project would consist of the construction of a surface water treatment faclity and associated reservoir through the development of a reglonal parnership to supply Pokk Gounty and its municipalities with sufface water from the Peace River. initial modeling results have concluded there is approximately 6.2 mgd of addilional flow, wilh a minhmum reservolr size of 22,000 acre-ft and a minimum diverston capacly of 74 mgd.	PCSWSP Costs based on 15 miles of piping from F. Meade to Bartow, transfer pumping, conventional suriace water treatment and storage. Unit costs are capital and O\&M costs.	6.2	\$205.1	\$7.37	2.5	74	6	150	6	60	0	0	5	50°	334
96	R-34	Mulbern: Landstar COD WWTF Option \#1. Publl Accoss Reuse SystomThls project would consist of Muberry sending all future reclaimed water to public access reuse. The reclamed water could offset intgation demands and could quallfy Mulberry for incentives, Incentives, Incentives such as: Increased water use permitted quantity, extended pemit fengh, per capla demand offsets, or ofher incentlves.	PCSWSP Quantily based on total reclamed water avalitable from the Mulberry Landstar COD WWTF in 2030. Quanity estimated to be 1.4 MGD of fotal reuse water. Capital costs based on transmission piphng to new developments.	1.4		.	0.6	17	9	235	2	20	0	0	7	70.	332
96	R-35	Mulberry: Landstar CDD WWTE Oplon \#2-Progress Energy Hines This project would consist of Mulbeny sending ali reuse flows to the Progress Energy Hines Complex for power generationi. The Progress Energy Hines Complex fequires more water for future cooling for power generation. Muibarry couid recelve 'ncentives that include Increased water use permit quantliy, extension of parmiflength, per capla demand offsets or other incentives.	PCSWSP Quantity based on fotal recialmed water available from the Mulbery Landstar CDD WWTF in 2030. Quantity estimated to be 1.4 MGD of total reuse water. Caplal cosis based on transmission plping to Progress Energy Hines.	1.4			0.6	17	9	225	2	20	0	0	7	70	332

Long List			Source/Calculations	Potentlai Quantity	Capltal Cost	Unt Costs	Yield (MGO)		Permittability		Additional Bentifit		Cost Index (\$)		Implementation Time		Total Score
Rank	Code	Deserfption	PCSWSP		(Smill	(SIKgal)	Grade	Score	Grade	Scare	Grade	Score	Grade	Score	$\frac{10 \%}{\text { Grade }}$		
96	R-36	This project would consist of sending all future rectaimed flows to the future Lakeland reclamed storage facilisy (wellands). All water from the storage facilly could be sent to TECO for power generation. The TECO facllity requires more water for fulure cooling needs. Muberry could receive incenlives that include increased water use permit quantity, extension of permilt tength, per capita demand offsets or other hincentives,	Quantily based on lotal reclamed water available from the Mulbery Landstar CDD WWTF in 2030. Quantliy estimated to be 1.4 MGD of total reuse water. Capilat costs based on transmission pliplag to Lakeland.	4.4			0.6	17	9	225	2	20	0	0	7	70	332
93	G-56	East: Timber Lake Plant. Ground Water Blending - This project would consist of blending Lower and Upper Floridan well waler. Thls concept would consist of drilling a new LFA welf for new water supply. The new LFA raw water supply in concept would be blended elither with the existing UFA raw water sipply or blended with the existing finished water from the WTPs. Water quaitity and quantly will be evalualed to keep any addittonal frealment at a minimum at any fecliny.	PCSWSP Cost analysis modudes cifiling a tower Floridan well(s). Capital Costs onily include the intlial planning, permitting and design fees, as well as the infrastructure construction cosis, Including land costs, legal fees and contingencies. Unt costs Includes both capital and annual O\&M costs.	0.03	\$0.87	\$5.51	0.0	0	8	200	2.	20	1	20	9	90	331
100	R-11	Auburndale Alred WWTF Optlon $\# 1$ - Calplie Power Onsite ROThis profect would consist of Caiphe Power Factily using a 1.5 mgd on-sle RO water treatment system to re-utlize 1.0 mgd of fectaimed water (blow down) currentiy disposed of via spray field. This quantify of water would offset the prevlous source from the Uppet Florddan Aqulfer which could then be pumped for potable use and could quallify Auburndale to recelve other incentlves. Incentives such as: fincreased water use permitted quantity, extended permit length. per capita demand offsels, or other incentives.	PCSWSP Cosis based on membrane treatment for Calpine Power Facllily.	1.18			0.5	14	9	225	2	20	0	0	7	70	329
100	R-12	Aubutndale Allred WWTF Optlon \#2 - Calphe Power reclalmed- This profect would consist of continuligg to send all reclamed water to Calphe Osprey Energy Cenfer for coollng purposes. The future reclaimed low could conilinue to be sent to Calpine Osprey Energy Center, in feturn for an Increased water use permit, exlended permit, per capha demand affsets, or other meentives.	PCSWSP Quantify based on total reclamed water avalable from the Alired WWTF in 2030. Quantity estimaled to be 1.18 MGD of total reuse water. Caplal costs based on increased piping from Aubumdale to Calptne Ospray Energy Center.	1.18			0.5	44	9	${ }^{235}$	2	20	0	0	7	70	329
100	R-13	Auburndale Ailred wwr Opfion 3 - Publle Access Reuse SystemThis profect would consist of disiributing the future reciained fow increase to new developments In Auburndafe for publlo access reuse to offset lrgation demands and could quality Auburndale to receive other incentives. Incentives such as: fncreased waler use permitited quantity, extended permit length, per caplta demand offsels, or other incentives.	PCSWSP Quantily based on total rectalmed water available from the Alred WWTF in 2030. Quantity estimated to be 1.18 MGD of total reuse water. Caplai costs based on transmission plofing to new developments.	1.18			0.5	14.	5	225	2	20	0	$0 .$	7	70 :	329
103	R-32	Mulberry: City of Mulberry WWIF Option \#1-TECO- This project would conslst of sending all future reciaimed flows to the future Lakeland reclalmed storage facility (wellands). All water from the storage facility could be sent to TECO for power generatlon. The TECO facilly requires more water for future coollng needs. Mulbery could recelve incentives that include increased water use permil quantity, extension of permit tength, per capita demand offseis or other incentives.	PCSWSP Quantly based on total reclaimed water avallable from the Mulbery WWTF in 2030. Quantity estimated to be 0,88 MCD of total reuse water. Captai costs based on transmisslon piphing to the Lakeland wettends.	0.88		.	0.4	\because 11	9	225	2	20	0	\bigcirc	7	70.	326

		Desctipion . Long List	Source/Calcutations	Potentlal Quantity	Capital Cost	Unit Costs	Yeld (MGD)		Permitability		AdditionalBeneflt 10\%		Cost Index (\$)		mplementation Time		Total Score
		Mulberry City of Mulberry WWTF Optio	PCSWSF	MGO	(Smil)	(SfKgal)	Grade	Score	Grade	Score	Grade	Score	Grade	Score	Grada		
103	R-33	This project would consist of Muiberry sending all future rectalmed flows to Bartow and Bartow sends all reciamed flows to the Progress Energy Hines Complex for power generallon. The Progress Energy Hines Complex requires more water for future coolthg for power generation, Mulberry could tecelva Incentives that include increased waier use pemil quaniliy, extension of permit lenoth, oer canfta demand of fsets or of or mincentives.	Quantiy based on total rectamed water available from the Mutbery WWIF in 2030 . Quantity estimated to be 0.88 MGD of total teuse water. Capital costs based on transmisslon plphag fo bartow.	0.88			0.4	11	9	225	2	$\dot{2} 0$	0	0	7	70	326
105	R.18	Dundee: Dundee Realonal WWTF Opfion \#1-Public Access Rouse System prolect would consist of sending all future reclaimed water supply to public access reuse. The City of Dundee could use future reclamed flows for residential itrigation to offsel polabte water demands and could qualify Dundee for other incentives. Incentives such as: increased water use pemilted quantity, extended permit length, per capita demand offsets, or other incentlves.	pcswsp Quartity based on total reclained waler avalibble from the Altred WWTF in 2030, Quantily estmated to be 0.82 MGD of fotal reuse water. Capitai costs based on transmission plping to new developments.	0.82			0.3.	10.	9	225	2	20	0	0	7	70	325
105	R-19		PCSWSP Quantity based on total reclamed water avaliable from the Altred WWTF in 2030. Quantily estlmated to be 0.82 MGD of total reuse water. Capilal cosis based on transmission piping to Dundee Ridge Middila School.	0.82			0.3	10	9	225	2	20	0	0	7	70	325
107	R-49	NWRUSA-PCU: Northwest Reqlonal WWIF Option \#2-Public Actess Reuse System - This project would consist of sending reclaimed water fow to be used for public access, Using the reclaimed water to offset imgation demands could qualify PCU for incentives. Incentives such as: Increased water use pernilted quantity, extended permit length, per capita demand ofisets, or other hincentives.	PCSWSP Quantity based on total reclaimed water avalable from the NWRUSA. PCU WWTF in 2030. Quanlity estimated to be 0.72 MGD of total reuse water. Capital costs based on transmission plping to new developments.	0.72			0.3	\mathfrak{g}	9	225	2	20	0	- 0	7	70	324
108	R-46	NERUSA-PCU: Pola Park WWTF - Public Access Reuse SysternThis project would consist of sending reclaimed water flow to be used for pubilc access. Using the reclaimed water to offset Irigation demands could qualify PCU for incentives. Intentives such as: increased water use permited quanity, extended permit length, per capita demand offsets, or other fincentives.	PCSWSP Quantity based on total reclatmed waler avallable from the NERUSAPCU Polo Park WWTF in 2030. Quantily estimated to be 0.71 MGD of total reuse water. Capital costs based on transmission piping to new developments.	0.71	-	*	0.3	9	9	225	2	\therefore	0	0.	7	70	324
109	R-37	Whinter Haven: Ciky of Whter Haven WWTF \#3 Opllon \#1. Public. Access Reuse System. This profect would consslst of Winter Haven sending future reclaimed flows ta public access reuse. The reclamed water could offset lrigation demands and quallfy Whter Haven for hcentives. Incentives such as: increased water use permited quantify, extended permit lenght, per capila demand offsets, or other, incentives.	PCSWS Quantiky based on total recialmed water avalable from the Winter Heven WVTF \#3 in 2030, Quantity estimated to be 0,67 MGD of total reuse water. Capital cosis based on transmission piping to new developments.	0.67			0.3		3	225	2	\because 30 20	0	\bigcirc	7	70	323
109	R-38	Winter Haven: City of Winter Haven WWIF \#3 Option \#2-Progress Energy- This project would consist of Winter Haven sending fulure rectalmed water flows to Progress Energy. Sending the reclaimed waier to Progress Energy could provide the city whith incentives. Incenflves such as: increased water use permitted quantity, extended permit lenght, per capita demand offsets, or other fincentives.	PCSWSP Quantity based on tofal reclaimed water avallable from the Winter Haven WWTF estimated to be 0.67 MGD of total reuse water. Capital costs based on transmission piping to Progress Energy.	0.67			0.3	.	9	225	2	20	0	0	7	70	323

Code reters to C - Consstration, R-Rocciaimed, S -Surice Waler,
O.Oher fiemaive supply G.Grund Water

Highighted Projecis $=$ Csilegatilas

Long List			Source/Calculations	Potential Quantity	Caplai	Unit Costs	Ylerd (MGD)		Permiltability		Adiditonal Benefit		Cost Ifdex (5)		ImplementationTimeTim		Total score
Ronk	Code	Fort Mleade: Fort Meade WWIF Opllon \#2 -Caralli		MGD	(Smil)	(SIKgal)	Grade	Score	Grade	Score	Grade	Score	Grade	Score	10\%		
111	R-21	This prolect would consist of sending alif future seclaimed water supply to Cargil Industries. Fort Meade has approximately 15 more years feft on a 25 year agreement to provide Industrial reuse to Cargil. Currently, Fort Meade produces 1 MGD of reuse. Of the $\ddagger \mathrm{MGD}$, only 0.4 MGD is provided to Cargill. The excess and future flow of reuse water can polentially be supplled to Cargll indusiries in exchange for incentives. Incentives may inctude: increased water use permit quantly, extension of permit lengh, per capita demand offsets or other incentives.	PCSWS: Quantlity based on total reclaimed waier avaliable from the For Meade WWTF In 2030. Quantly estimated to be 0.62 MGD of total reuse waier. Capital costs based on Increased pipe slze to Cargil industries.	0.62			0.2	7	9	$225 .$	2	20	0	0	7	70	322
112	R-48	NWRUSA-PCU: Northwest Regional WWTF Option \#1-BigCypress Golf and County Club- This prolect woutd consist of PCU sending future reclamed water flows to Big Cypress Golf and County club. Sending the reclalned water to a golf course could provide the city with incentives. Incentlves such as: Increased water use parmitted quantly, extended permit length, per capta demand offsets, or other incentives.	PCSWIS Quantity based on tofal reclamed water avallable from the NWRUSAPCU Northwest Regional WWIF in 2030. Quantily estimated to be 0.52 MGD of tolal reuse water. Capttal costs based on transmisslon plping to the Big Cypress Golf and County Cub.	0.52			0.2	6	8	225	2.	20	0	0	7	70°	321
112	R.53	SWRUSA-PCU: Northwest Reqlonal WWTF Option \#2 - Lakeland FECO prolect- Thls profect would consist of sending all future recialmed flows to the future Lakeland reclamed storage faclliy (welliands). All water from the storage facility could be sent to TECO for power generation. The TECO facility fequites mors water for fulure cooling needs. Mulbery could recelve incentives that hnctude increased water use permil quantly, extenslon of permil lenglth, per capita demand offsets or other incenlives.	PCSWSP Quantliy based on fotal reclamed water available fom the SWRUSAPCU Nothwest WWTF in 2030. Quantly estimated to be 0.52MGD of total reuse water. Capital costs based on fransmission plping to Lakeland.	0.52	.		0.2	6	8	225	2	20	0	0	3	70	321
114	S-13	Peace Rlver at Bartow - This project would consist of the construction of a surface water treatment factily and associated reservolr through the development of a regionat partuership to supply Polk County and its municpalities with surface water from the Peace River, Inllial modeling results have concluded there is approximately 5.1 mgd of additional flow, whith a minmum reservolr size of 20,000 acte-ft and a minimum diverslon capacily of 84 mod.	Pcswsp Costs based transfer pumping, conventional surface water treatment and storage. Unit costs ate caplat and O 鱼 costs.	5.1	\$167.9	\$7.45	2.0	61.	5	150	7	70	0	0	4	40	321
115	\%-28	Lake Alfred; Lake Alfred WWIF Option Hi * Public Access Reuse System This profect would consist of sending all future reciamed water supplies to public access reuse. Using the reclaimed water to serve pubic actess reuse to its cilzens could offset polable water demands and could quatify Lake Affred for other incentives. fncentives such as: Increased water use permitted quantily, extended permil fength, per capla demand offsets, or other incentives.	PCSWSP Quantity based on total teclamed water avaliable from the Lake Alfred WWTF in 2030. Quantly estimated to be 0.47 MGD of total reuse water. Capltal costs based on transmistion piping to new developments.	0.47			0.2		9	225	2	20	0	0	7	70	321
115	R-29	Lake Alffed: Lake Alfred WUTE Optlon \#2- Supplament Ag. CropsThis project would consist of continuling to send flows to the city owned citus grove for agticulhural reuse or oher largo water user. Ushig it's feclamed supply for zgricultufal feuse could qualify Lake Alfred to receive incentives. Incentives such as: lncreased water use permitted quantily, extended permit lengh, per caplla demand offsets, or other fincentives.	PCSWSP Quantily based on total reclamed water avallable from the Lake Affred WWTF in 2030. Quantily estimated to be 0.47 MED of total reuse water. Capital costs based on transmission plping to the citrus grove.	0.47			0.2	6	9	225	2	20	0	0	7	70	321

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Rant Code TDesctiption Long List} \& Source/Calculations \& Potental Quantliky \& Capltal Cost \& Unit Costs \& \multicolumn{2}{|l|}{Yeld (MGD)} \& \multicolumn{2}{|l|}{Permiltability} \& \multicolumn{2}{|l|}{Additlonal Benefit} \& \multicolumn{2}{|l|}{Cost Index (\$)} \& \multicolumn{2}{|l|}{Implementation
Thme} \& \multirow[t]{2}{*}{Total Score} \\
\hline \& \& Lake Alfred. Lake Alfred WWTP Option H3-Lake Affred to Battow WWTF \& \& \& (Smil) \& (Sikgal) \& Grade \& Score \& Grade \& Score \& Grade \& Score \& Grade \& Score \& \& \& \\
\hline 115 \& R-30 \& \begin{tabular}{l}
to Progress Energy Hines Complex- \\
This profect would consist of Lake Affed sending future rechaimed water flows to Progress Energy. Current and future interconnectlons would allow reclaimed flows to be sent wa other cilles. Sending the rechalmed water to Progress Energy could provide the city with incentives, incentives such as: increased water use permitted quantly, extended permit lenglh, per capita demand offsels, or ofherincentives.
\end{tabular} \& \begin{tabular}{l}
Pcswsp \\
Quaniliy based on total reclamed water avallable from the Lake Altred In 2030. Quantly estimated to be 0.47 MGD of total reuse water. Capital costs based on transmission plping to Bartow.
\end{tabular} \& 0.47 \& \& \& 0.2 \& 6

6 \& 9 \& 225 \& 2 \& 20 \& 0 \& 0 \& 7 \& 70 \& 327

\hline 118 \& R-47 \& | NERUSA PCU: Oak Hills - Publlc Accass Reuse System- |
| :--- |
| This project would constst of sending rectamed water flow to be used for public zecess, Using the rectalmed water to offsel lnigation demands coufd quality PCU for incentives, fncentives such as: increased water use permitted quantily, extended permit length, per capita demand offsets, or other incentlves. | \& | PGSWSp |
| :--- |
| Quantly based on total reclamed water avalibble from the NERUSAPCU Polo Park WNTF In 2030. Quantlify estimated to be 0.46 MGD of total reuse watet. Capital costs based on transmission pipling to new developments. | \& 0.46 \& \& \& 0.2 \& 5 \& 9 \& 225 \& 2 \& 20 \& 0 \& 0 \& 7 \& 70 \& 321

\hline 119 \& R-57 \& | Direct Fotable Reuse - |
| :--- |
| The concept of this category would conslst of direct potable reuse from reclaimed water. | \& | PCSWSP |
| :--- |
| Costs based on |
| microfiltrathonhultanilsation, membrane reverse osmosis, distifection, Unit costs include bolh captal and D* | \& 20 \& \& \& 8.0 \& $240{ }^{\circ}$ \& 0 \& 0 \& 8 \& 80 \& 0 \& 0 \& 0 \& 0 \& 320

\hline 120 \& R-54 \& This project would consist of sending feclalmed water fow to be used for pubic access. Using the reclamed water to offset itrigation demands could qualily PCU for incentives. Incentives such as: Increased water tse permitted quantliy, extended permit length, per capita demand offsets, or other hacentlves. \& | PCSWSP |
| :--- |
| Quantily based on total reclatmed water avallable from the SERUSAPCU Sun Ray WWTF in 2030. Quantly estmated to be 0.38 MGD of total reuse water. Capital costs based on transmission piping to new develapments. | \& 0.38 \& * \& - \& 0.2 \& 5 \& 9 \& 225 \& 2 \& ${ }^{20}$ \& 0 \& 0 \& 7 \& 70 \& 320

\hline 121 \& S-5 \& | Peace RiveriArcadia. |
| :--- |
| This profeci would consist of the construction of a surface water treatment facility and assoclated reservoir through the development of a regianal partnerbhtp to supply Folk County and its municipalities with surface water from the Peace River. Initial modeling results have concluded there is approximately 30.7 mgd of addiftonal fow, untess there are additional quantitles permitted in the future by the PRMRWSA or other future upstream users not known at this thme. A minimum reservoir size of 64,000 acre-ft and a minimum diversion capacty of 517 mgd would be required. Assuming Polk County will not recelve all of the flow avallable at this location, a yleld of 15 mgd will be used. This foption will requite approximately 50 mile of piphng from Arcadia to the grid. | \& | PCSWsp |
| :--- |
| Costs based on 50 milies of piping from Battow to Arcadla, transier purning, conventional surface watet treament and storage. Unit costs are caplital and O8M costs. | \& 45.0 \& \$388.7 \& \$5.56 \& 6.0 \& 180 \& 2 \& 50 \& 6 \& 50 \& 1 \& 18 \& 2 \& 20 \& 318

\hline 122 \& $\mathrm{R}-20$ \& Fort Meade: Fort Mande WWTF Opilon H1 - Public Access Reuse SystemThis profect would conslst of sending a portion of the future reclaimed water supply to public access reuse. Fort Meade has approximately 15 more years teft on a 25 year agreement to provide hndustrial reuse to Cargill. Currentiy, Fort Meade produces 1 MGD of reuse. Of the 1 MGD , only 0.4 MGD is provided to Cargil. The excess and fuluefe flow of reclaimed water can potentially be used for pubilic accass teuse, offsetting Irigation demands. \& | PCSWSP |
| :--- |
| Quantity based on tolal reclalmed water avalable from the Alfred WWTF in 2030. Quanlity estimated to be 0.22 MGD of total reuse water. Capital costs based on transmission piping to new developments. | \& 0.22 \& \& \& 0.1 \& 3. \& 9 \& 225 \& 2 \& 20 \& 0 \& 0 \& 7 \& 4

70 \& 318

\hline
\end{tabular}

Long List			Source/Calculations	Potential Quantity	Capltal Cost	Unit Costs	Yledd (MGD)		Permitability		Addiltlonal Beneft		Cost index (5)		implementation Time		Total Score
Rank	code	NWRUSA.PCLI: Mount Olve WWTF - Public Access Reuse System -	PS		(Smill)	(sikgal)	Grade	Score	Grade	Score	Grade	Score	Grade	Score		ade	
123	R-50	This project would conslst of sending teclaimed water flow to be used for publle access. Usling the rectaimed water to offset inigation demands could qualify PCU for incentives. Incentives such as: increased water use permilted quantity, extended permit length, per caplta demand offsets, or oher incentlyes.	Quantity based on total fectained water avallable from the NWRUSA. PCU WWTF in 2030. Quantly estimated to be 0.13 MGD of total reuse water. Capital costs based on transmisston plping to new developments.	0.13	.		0.1	2	9	225	2	20	0	0	7	70	317
124	R-51	ERUSA-PCU: Waverly WWTF - Puble Access Reuse SysternThis project would consist of sending reclatmed water fow to be used for publle access. Using the reclained water to offset infigaton demands could quallfy PCU for incentlves. incentives such as: Increased water use permited quantity, extended permit length, per capita diemand offsets, or other incentlves.	PCSWSP Quantity based on total reclaimed water avallable from the ERUSAPCU WWTF in 2030. Quantily estimated to be 0.03 MGO of total reuse water. Capital costs based on transmission piping to new idevelopments.	0.03	-	+	0.0	0	9	225	2	20	0	0	7	$70 \text {. }$	315
125	S-4	Surface water runoff Industry(Ralnwater Harvestina Water Croppling)This profect would consist of using large industifal roofiops or land tracts for rainwater harvesting in conjunction with cistems for inigution water or other uses.	pcswsp Cost and demand estrmates will be considered in the future.	-	-	-	0.0	0	8	200°	5	50	0	0	6	$\stackrel{60}{6}$	310
126	S-6	Peace River-Countv LIme- Thls project would consist of the constuction of a surface water treatment facllyy and associated reservoir through the development of a reglonal partnership to supply Polk County and its municipalities with surface water from the Peace River. The addillon of Bowlegs creek to the Peace River-Ft Meade evaluation will add an addilional 1.2 mgd of source capacty, 7,000 acre-ft of minimum sforage capacily, and 26 mgd of minhmum diverston capacily. The sum of Bowlegs creek and FL Meade wll yield and minlmum diversion capacity of 100 mgd ; minhmum storage capacity of 29,000 acre-fi; and a source capacity of 7.4 mgd .	PCSWSP Costs based on 20 miles of piping from FL. Meade to Bartow, transfer pumping, conventional surface water freatment and storage. Unt cosis are capital and O 音 costs.	7.4	\$275.3	\$8.31	3.0	89	6	150	5	50	0	0	2	$\therefore 20$	309
127	R.7	Auqment Reuse wifh Lawer Floridan Aculfer The concept of this category would Involve using Lower Floridan water to augment reuse supplies. The lower qually water whll be used to supplement reclaimed water systems to offset potable water demands. Implementatian of augmenting reuse with LFA water coutd provide the user with incentives. Incentives such as: increased water use pemithed quanllty, extended permit lenolh, per capita demand offsels, or oiner incenives.	PCSWSP Costs based on pfing, pumping, Ireatment, and well drilling. Unit costs nclude bolh capital and O\&M costs.	25			10.0	300		. 0		0	0	0		$\therefore 0$	300
428	S-12	Payne Creek near Bowing Green - This project would consist of the construction of a surface water treatment facility and associaled reserviir through the development of a reglonal partnershlp to supply Polk County and lis mundelpalities wilh surface water from the Payne Creek. Inilial modeling results have concluded there is approximately 4.6 mgd of addltonal how, with a mintmum reservoir size of 13,000 acre-fi and a minimum diversion capacly of 116 mgd .	PCSWSP Costs based on 25 miles of piping from Payne Creek to Bartow, transfer pumping, conventional surface water treatment and storage, Unit costs are caplla and $0 \& M$ costs.	4.6	\$152.5	\$7.19	1.8	55	6	150	4	40	0	0	5	50	295
129	S-11	Saddie Creek at P-11- This profect would consist of the construction of a sufiace water treatment faclity and associated reservoir through the development of a regional partnership to supply Polk County and its munticipalities with surface water from the Saddle Creek. Initai modeling tesulls have concluded there is approximetely 1.75 mgd of additional flow, whith a minimum reservoir size of 12.000 acre-ft and a minimum diversion capacily of 35.5 mod .	PCSWSP Costs based on 5 miles of piping from Saddle Creek to Polk County Utultles, transier pumping. conventlonal suriace waler treatment and slorage. Unlt costs are caplat and O8M.costs.	1.8	\$110.5	\$14.16	0.7	21	7	-175	2	20	0	0	5	50	266

Long List			SourcefCalcufations	Potential Quanilly	Capital Cost	Unit Costs	Yiedd（WGD）		Permiltability		Additional Benefit：		Cost index（s）		$\begin{aligned} & \text { Implementation } \\ & \text { Time } \end{aligned}$		Total Score
Rank	Code	Description			［Smil］	［SIKgal）	Grade	Score	Grade	Score	Grade	Score	Grade	Score		de	
130	6． 30	This project would consist of blending Lower and Upper Flontdan well water． This concept would consist of drilling a new LFA well for new water supply，The new LFA raw water supply in concept would be blended either with the existing UFA raw water supply or blended with the existing finished water from the WTPs．Water quallity and quantity will be evaluated to keep ary addilionat treatment at a minlmum at any facllily．	peswsp Cost analysis includes driling a lower Floridan well（s）．Capital Costs only include the Intlal planning，permiting and design fees，as well as the Infrastructure construction costs， theiuding land costs，fegal fees and contingencies．Unt cosis Includes both capilal and annual O8M costs．	0.01	50.87	\＄16．50	0.0	0	${ }_{6}$	150	2	20	0	0	9	90.	260
131	S－10	Bowlegs Creek near Ft．Meade－ This project would consist of the construction of a surface water treaiment facilly and associated reservolr through the development of a reglonal parnership to suppyy Polk County and hs municipaltes with surface water from the Eowiegs Creek．Initial modelling results have concluded there is approximately 1.2 mgd of additional flow，with a minimum reservoir size of 7,000 acre－f and a minimum diversion capacly of 26 mod ．	PCSWSP Cosis based on 15 mlles of piping from Bartow to Ft Meade，transfer pumping，conventional surface water Ireatment and storage．Unit cosis fare capital and 08 M costs．	1.2	\＄88．5	\＄15．91	0.5	$\bigcirc 14$	7	175	2	20	0	0	5	so	259
132	5－3	Use of Land－Fli runoff－ This profect would consist of plping runoff from the upper layers of Landfils to other locations：The runoff coutd polentally be used as a supplementary source of reclaimed water or for power generation tacili⿻丷木丨⿱⿰㇒一乂⿹\zh26灬ys．	SWFWMD Cost and demand estimates will be considered in the fuure．	＊	－	－	0.0	$\bigcirc 0$	4	\cdots	5	50	0	0	8	80	230
133	5－8	South Prong－Alafla River Potable－ This project would consist of the construction of a surface water freatment faclity and associated reservol through the development of a reglonal partnership ta supply Polk County and its muncipalites with suface water from the South Prong Alafia River．Initlal modelling results have concluded there is approximately 5.8 mgd of additional flow，with a mintmum teservolr stze of 15000 acte－ft and a mbimum diversion capacity of 58 mgd ．This option requires 15 miles of additional plping from Bartow to the South Prong of the Alafia River． The inital profect site will be located at the gauging sile wiltin Hilisborough County，from which now data was used fo calculate the avalable quantitles of water．	PCSWSP Costs based on 15 milles of piping from Bartow to the South Prong Alafia River gauge ste，transfer pumping，conventional surface water freament and slorage．Unit costs are capila and O\＆M costs．	5.8	\＄155．4	\＄5．90	2.3	70	4	100	3	30	0	4	2	20	224
134	S－4	Kissimmee RiveriLake Hatchineha Watorshed－ This project would consist of the construction of a surface water treatment faclity and associated reservolt through the development of a regional partinership to supply Polk County and is munkipalites with a relative amount of how from the Kissimmee River Basin．This option will require approximately 27 miles of piping from Kissimmee River facility to the grid．A more detalled evaluation of the potential additional water supply from the entire kissimmee River Basin is curtently being done to find future quantities of water for supply． Currentiy an opionable amount of 5 mgd will be assumed．If the quantly later increases or decreases It will be adjusted appropialely．	PCSWSP Costs based on 27 milles of piping from the head walers of the Kissimmee River to Lake Wales， transfer pumphg，conventional sufface water treatment and storage． Unit costs are caphal and O\＆ costs．	5.0	\＄122．5	\＄5．25	2.0	60	3	75	3	30	1	34	2	20	216
135	S．7	North Prong－Alatla Rlver Potable－ This project would consist of the construction of a sufface water treatment facilly and assoclated reservoir through the development of a regional parthership to supply Polk County and its muntipalities with surface water from The Alafia River．Intiai modeling results have concluded there is approximately 5.2 mgd of addillonal flow，with a mintmum reservoir size of 14000 acre－ft and a minimum diversion capacity of 81 mgd ．The linital profect stte will be located at the gauging ste wilthin Hlltsborough County，from which flow dala was used to calculate the availabla guanilies of water．	PCSWSP Cosis based on 16 miles of piphng from North Prong Alafia River Gauge site to Lakeland，transfer pumping． conventional surface water treatment and storage．Unit costs are capital and O M costs．	5.2	\＄139．4	55.94	2.1	62	4	100	3	30.	0	2	2	20.	215

Lent Long List			Source/Calculations	Potential Quantity	Capltal Cost	Unit Costs	Yeld (MGD)		Permiltability		Additional Qeneft		Cost Index (\$)		Implementation Tlme		Total Score
		Confluence - Alafla River Potable-		MGD	(Smili)	[SMKal]	Grade	Score	Grade	Score	Grade	Score	Grade	Score		de	
136	S. 3	This project would consist of the consinuction of a surface water treatment facility and assoclated reservolr through the development of a reglonal partnership to supply Polk County and ls muntipalliss wilh suface water from the confluence of the North and South Prong's of the Alafia Rlver. Initial modeling results have concluded there is approximately 5,3 mgd of addilionat flow, with a mintmutn reservol size of 15000 acre-f and a minimum diverslon capacity of 200 mgd . This option requires 15 miles of additional piping from Battow to the coniluence of the Alaia Rlver.	PCSWsp Cosis based on 15 miles of plong from Bartow to the Confluence of the Alafia Rlver, transfer pumping, conventional surface water treatment fand storage. Unit costs are capilal and 08 M costs.	5.3	\$156.6	\$6.50	2.4	64	4	100	3	30	O	-	2	$\begin{aligned} & \because \\ & \\ & 20\end{aligned}$	214
		Peace Relver near Zoifo Springs--															
137	S-18	facility and assoclated reservoir through the development of a regional partnership to supply Polk Counly and its municipalites with surface water from the Peace River. Inilial modeling results have concluded there is approximately 13.3 mgd of additlonal flow, with a minmum resenvolr size of 37,000 acre-fl and a mhimum diversion capacity of 259 mgd . Thls profect requires an adoitional 20 tmiles of piping from Zolfo Springs to the grtd. The cost estimate assumes Polk County will recelve only 6.65 MGD of the total avalable supply.	PCSWSP Costs based on 20 miles of piping from Zollo Sptings to Bartow, transfer pumping, conventional surface water treatment and storaga. Unil cosis are capltal and O\&M costs.	6.7	\$188.1	\$6.23	2.7	80	3	75	2	20	0	0	2	20	195
		Peace Crear Canal Polk County----	PCswS														
138	\$-17	Thacility and assoctated reservelr through the development of a reglonal parthership to supply Polk County and its municipalitles with surface water from the Peace Creak. This opllon assurnes 20% of the flow at Bartow.	Costs based transfer pumping, conventionai surface waler treatment and storage. Unit costs are caplal and 08 m costs.	1.1	544.9	\$9.02	0.4	13	4	100	3	30	0	0	5	50	193

[^0]:
 O.OHther Aiternatve Supply, G-Grou
 Highlghed P Pojects $=$ Calegorites

[^1]: Coda reters to C-Consenvalton, R-Recialmed, S -sufface Water,
 Oher Riternacis Suph, Ground Wat

